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My learning journey in big data & causal inference
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PhD LUMC (2018-2021) 

• Karolinska Institute: Swedish registries (high quality!)

• Introduced novel causal inference methods in nephrology

• “Optimal cardiovascular treatment strategies in kidney

disease: causal inference from observational data”

Postdoc Harvard (2021-2023) 

• Further training in causal inference

• Claims datasets (>100 million patients)

• Focus on novel treatments in CKM

Assistant professor & MSc medical student (2023-now)



There is a lot of routine care data
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Healthcare use
• Inpatient
• Outpatient

Diagnoses

Laboratory
measurements

Medications

The patient journey (time)



Extracting useful insights from these data is possible
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Causal inference

Clinical evidence on 
safety and effectiveness 
of treatments

+



Extracting useful insights from these data is difficult
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+

+

Causal inference

Clinical evidence on 
safety and effectiveness 
of treatments



Clinical research: Cardio-Kidney-Metabolic diseases

6
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Why do we need
routine care data in 
addition to RCTs?



In an ideal world…
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For each causal question: perform an RCT

Group 1

Group 2



RCT vs. observational studies: confounding
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RCT

vs.

Observational study

vs.

Observational studies need to measure and appropriately adjust for all confounders

High-risk

Low-risk



Trials may not be timely
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December 2020 November 2022



Trials unlikely to be conducted

Risk of heart failure hospitalization for GLP-1 

receptor agonists vs. DPP-4 inhibitors or SGLT-2 

inhibitors in patients with type 2 diabetes: a target 

trial emulation. Xu Y, … EL Fu. Circulation 2025 

(resubmitted)
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Trial populations are highly selected
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Consequences of highly selected populations
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Hyperkalemia risk for mineralocorticoid receptor antagonists



Trials may be too small for severe, rare safety signals

Fu EL, et al. Safety of SGLT-2 Inhibitors in 

Patients with CKD and Type 2 Diabetes: 

Population-Based US Cohort Study. 

CJASN. 2023
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High quality causal
inference methods



A 20-year old open problem…

Due to confounding (the usually culprit we point to)? Or something else…
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IDEAL trial     vs.         observational studies
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Randomized IDEAL trial :

No mortality difference 
between early vs. late 
dialysis start: HR 1.04 
(0.83-1.30)

Susantitaphong et al. AJKD 2012

Meta-analysis of observational studies showed 

strong survival disadvantage for early dialysis start

HR 1.44 for 10 ml/min earlier start



What would the RCT look like? 

Time E
A
T0

Early 
dialysis

Late 
dialysis

T0

T0

3 components aligned at randomization:

• Eligibility criteria are met (E)

• Assignment of treatment strategy (A) 

• Start of follow-up (= time zero, T0)

None of the ~20 studies did this!

Misaligning these 3 components 

introduces bias in an observational study



Framework for designing and analyzing studies
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Impact of incorrect methods
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Correct 
study 
design

Biases due to 
misalignment

Confounding 
adjustment 
necessary

Hazard ratio 
(95% CI) 
early vs. late

Randomized IDEAL trial  - No 1.04 (0.83-1.30)

Trial emulation analysis  - Yes 0.96 (0.94-0.99)

HR of 1.46 and 1.58 similar in magnitude to previous biased observational studies (n= 21) 
→ able to replicate previous biased results 

Fu et al. BMJ 2021

Biased method #1 Immortal time bias Yes 1.46 (1.19-1.78)

Biased method #2
Lead time bias, 
Depl. suscept. bias

Yes 1.58 (1.37-1.83)

But… can we replicate IDEAL findings when using a proper design?
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57% suffered from immortal time bias

44% suffered from prevalent user selection

→ These biases are prevented if target trial emulation is used

Looks simple, but is it implemented?



Preprint
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EL Fu, … MA Hernan. BMJ 2025 (resubmitted). Preprint online at SSRN
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High data quality



Data quality

24

Outcomes

Confounders

Treatments



Data quality vs. data quantity
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Treatment
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vs.

Prescription vs. filled prescription 
(and adherence)



Outcomes
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Electronic health records

Hospital A Hospital B

Outcome definition

ICD-10Lab



Confounders: measurement and adjustment
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Some questions require longitudinal data 
on and adjustment for time-varying 
confounders with complex methods:
• Inverse probability weighting
• Marginal structural models

How do we handle missing data? 

Measurement

unmeasured confounding



Benchmarking against trial findings
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KRT

Death

MACE

CKD G3

Observational 
estimates, 

HR (95% CI)

0.68 (0.48-0.98)

0.97 (0.81-1.17)

1.09 (0.85-1.40)

CKD G3

Meta-analyses
OR/HR (95% CI)
Xie et al. AJKD 2016

Ninomiya et al. BMJ 2013

0.65 (0.51-0.80)

1.00 (0.89-1.13)

0.94 (0.75-1.12)

CKD G4-5

Observational 
estimates, 

HR (95% CI)

0.79 (0.69-0.89)

0.97 (0.88-1.07)

1.00 (0.88-1.15)

KRT = kidney replacement therapy; MACE = major adverse cardiovascular events



Negative control outcomes
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Ischemic stroke
Non-CV death

Observed HR 
(95% CI)

Assumed 
true HR

Negative 
control 
outcome

0.81 (0.65-1.01)1.00Non-CV death

0.83 (0.65-1.06)1.00Ischemic stroke

Primary outcome

0.72 (0.67-0.77)

Non-CV death:

0.89 (0.72-1.11) 

Ischemic stroke:

0.86 (0.67-1.10)

Bias correction



Study 
question

•Intended/unintended, beneficial/harmful effects

•Active comparators

Data quality

• Granularity of confounders (e.g. presence of 
laboratory measurements, ejection fraction etc)

Statistical 
analysis

Adjustment for measured confounders

Checks

•Benchmark against trial results

•Negative control outcomes
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Combatting confounding



33

What’s next?



From average treatment effects to personalized medicine
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Useful references

• Starting right: aligning eligibility and treatment assignment at time zero when emulating a target. trial Fu et al. 

BMJ 2025 (resubmitted). Preprint online at SSRN (algorithm to ensure correct alignment)

• Target Trial Emulation to Improve Causal Inference from Observational Data: What, Why, and How? JASN 2023. 

(introduction to target trial emulation)

• Pharmacoepidemiology for nephrologists (part 2): potential biases and how to overcome them. CKJ 2020. Fu et 

al. (immortal/prevalent user bias)

• Timing of dialysis initiation to reduce mortality and cardiovascular events in advanced chronic kidney disease: 

nationwide cohort study. BMJ 2021. Fu et al. (application of target trial emulation)

• Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A 

Nationwide Study. JASN 2021. Fu et al. (application of target trial emulation)

• Sodium-glucose cotransporter 2 inhibitors vs. sitagliptin in heart failure and type 2 diabetes: an observational 

cohort study. European Heart Journal 2023. Fu et al. (negative control outcomes)

• Comparative Effectiveness of Renin-Angiotensin System Inhibitors and Calcium Channel Blockers in Individuals 

With Advanced CKD: A Nationwide Observational Cohort Study. AJKD 2021. Fu et al. (benchmarking against trial 

findings)
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e.l.fu@lumc.nl

edouard-fu.github.io
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