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Scope of this lecture

Make treatment groups

Adjust for baseline an
time-varying confounding
Estimate your treatment
effect of interest

Target trial emulation
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* Thisis going to be an interactive lecture

* Go to classpoint.app and fill in the classcode at the top right corner of this slide




Classification of treatment strategies /

Treatment strategies

Point Sustained

A A

To To




Baseline vs. time-varying confounding /

Treatment strategies

Point Sustained
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* Groups need to be similar at time zero * Groups need to be similar at time zero & during follow-up

* Only baseline confounding e Baseline & time-varying confounding




Baseline vs. time-varying confounding /

Treatment strategies

Point Sustained
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* Groups need to be similar at time zero * Groups need to be similar at time zero & during follow-up
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Let’s practice with classifying treatment strategies

Point strategy or sustained treatment strategy?

1.
2.
3.
4.
5.

Receive bariatric surgery

Receive Pfizer first dose now, and second dose 3 weeks later
Start SGLT-2i within 3 months from now

Never start SGLT-2i

Start GLP-1RA when a cardiovascular event develops

B: sustained
strategy

D[I[l Multiple Choice

Go to classpoint.app



Visualizing the history of a population in a tree graph
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Visualizing the history of a population in a tree graph

L,

200.000

L,: Baseline confounder



Visualizing the history of a population in a tree graph
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L,: Baseline confounder
A,: Treatment assignment



Visualizing the history of a population in a tree graph
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Visualizing the history of a population as a tree
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Some exercises
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Instructions on reading the tree

1 binary confounder L (smoking)
1 binary treatment A (medication)
1 binary outcome Y (death)

Number above the lines represent proportions

Go to classpoint.app

Number below the lines represent number of patients

Question 1:
What is the probability that L,=1? 0.5

Question 2:
How many are untreated? 100.000 + 100.000

Question 3:

How many die among untreated? 28.810 + 51.490 ={80.300

Question 4:

What is risk of death among untreated? 80.300/200.000 = 0.402

200.000




Some exercises

Ly Aq Y N Instructions on reading the tree

1 binary confounder L (smoking)

" T71.190 @ . -

L:  Confounder 0 @ 1 b!nary treatment A (medication)
A: Treatment l 58810 a 1 binary outcome Y (death)

Y: Outcome -

Number above the lines represent proportions
Number below the lines represent number of patients

oo
Y ® M @®

47.600

52.400

o (D

400.000

Question 5: No
Does L, predict A;? Pr[A;=1]|L,=1]=0.5

Question 6: \'ggf\l =1|L,=0]=0.5

Does L, predict Y?  pr[y =1]|L, = 1] = (51.490+70.180)/200.000 = 0.61

lr

48.510

D (B

lr

91.490

Question 7: Pr[Y = 1|L, = 0] = (28.810+52.400)/200.000 = 0.41
b @ Is L, a confounder? No
29.820 L1 N
1 70.180 . % ﬂ AL —Y

[EEN
ﬁ
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Baseline confounding




Let’s check that these data indeed come from a randomized trial

Ly Ay Y N |—1 .
A1 — Y

71.190 In a randomized trial

L: Confound . .
ontounaer * Prognostic factor does not determine whether

A: Treatment

Y: Outcome 28.810 someone receives treatment or not
e Association is causation in randomized trial
oM 47.600
v 0.52
1 52.400

400.000

Step 3: Effect estimation

48.510 Risk among untreated
(28.810+51.490)/(100.000+100.000) = 0.40

51.490
Risk among treated
(26.200+56.144)/(50.000+80.000) = 0.61

29 820 Causal risk difference: 0.61-0.40 = 0.21 (= 21%)
Causal risk ratio: 0.61/0.40 = 1.52

70.180



New tree graph. Do these new data come from a randomized trial?

Ly Ay Y N
L: Confounder oM} 35.595
A: Treatment
Y: Outcome 14.405
N 23.800
0 0.50
! 26.200
200.000
9.702
10.298
23.856

< LN
A, — Y

In observational studies
* Prognostic factor determines whether someone
receives treatment or not (L, = confounder)

* Association is NOT causation

Step 3: Effect estimation without adjustment for baseline confounding

Risk among untreated
(14.405+10.298)/(50.000+20.000) = 0.35 # 0.40

Risk among treated
(26.200+56.144)/(50.000+80.000) = 0.63 # 0.61

Confounded risk difference: 0.63-0.35 = 0.28 (= 28%) # 0.21
Confounded risk ratio: 0.63/0.35 = 1.80 # 1.52



Adjusting for baseline confounding with weighting (IPTW)

Ly Ay Y N

ot 35.595 Inverse Probability of Treatment
Weights are the inverse of the

L: Confounder
A: Treatment

) 14.405 . : :
Y: Outcome probability of having received
your treatment history given
confounders
23.800 Here:  w. — 1
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26.200
200.000
9.702
10.298
23.856
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Adjusting for baseline confounding with weighting (IPTW)

L,

L: Confounder
A: Treatment
Y: QOutcome

200.000

35.595

14.405

23.800

26.200

9.702

10.298

23.856

06.144

Inverse Probability of Treatment
Weights are the inverse of the
probability of having received
your treatment history given

confounders

Here:

1
W = —-—
L pr[Ay|L4]



Adjusting for baseline confounding with weighting (IPTW)

L,

Confounder
A: Treatment
QOutcome

35.595
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Inverse Probability of Treatment
Weights are the inverse of the
probability of having received
your treatment history given
confounders

Wt = B L]



Adjusting for baseline confounding with weighting (IPTW)

L: Confounder
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200.000

QOutcome

L, Ay Y N wy N,
o 35.595 1 71.190
Treatment ﬁ =2
14.405 28.810
23.800 1 47.600
— =2
0.5
26.200 52.400
9.702 48.510
1 _g
0.2
10.298 51.490
23.856 29.820
01—8 =125
56.144 ' 70.180

Inverse Probability of Treatment
Weights are the inverse of the
probability of having received
your treatment history given

confounders

Here:

1
W = —-—
L pr[Ay|L4]



Turning our observational study into a randomized trial

L, A Y N
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Treatment effect estimation in the weighted pseudopopulation

400.000

A

71.190

28.810

47.600

52.400

48.510

51.490

29.820

70.180

|—1\
AL —Y

In weighted pseudopopulation

Confounder no longer determines whether someone
receives treatment or not

Association is causation in the weighted
pseudopopulation

Effect estimation

Risk among untreated
(28.810+51.490)/(100.000+100.000) = 0.40 \/

Risk among treated
(52.400+70.180)/(100.000+100.000) = 0.61 Vv

Causal risk difference: 0.61-0.40 = 0.21 (= 21%) \/
Causal risk ratio: 0.61/0.40 = 1.52




Some comments on weighting /

I * Note that we only assumed 1 binary confounder — So we could calculate the weights
nonparametrically (i.e., without models)

* In practice, there may be many confounders, which may be categorical and
continuous = need to fit models to estimate the weights (e.g. logistic regression
model)

* Note that if there are unmeasured confounders (e.g. if we had not measured L,), we
cannot use them to estimate our inverse probability of treatment weights, and our
resulting treatment effects will be biased (then we have not turned our observational

study into a randomized trial)



Some comments on outcome model /

I * In practice, we also fit a model for the outcome (e.g. a weighted Cox regression) since

H survival times are not observed for everyone (there is censoring)

* To obtain correct confidence intervals we need to take into account the weighting,

e.g. with robust standard error or bootstrapping
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Time-varying
confounding




Recap baseline vs. time-varying confounding /

Treatment strategies

4/\.

Point Sustained
., ; “start treatment
start treatment and always use”
| . | .
| > | >
To To
* Groups need to be similar at time zero * Groups need to be similar at time zero & during follow-up
* Only baseline confounding * Baseline & time-varying confounding



Why the effects of sustained strategies are more interesting

If we compare the point strategies “start treatment” vs. “do not start treatment”, what problems arise?
 Many people in “start treatment” group may stop treatment during follow-up
* Conversely, many people in “do not start treatment” group may start it during follow-up

 We may then find a hazard ratio of 1.0 even for a treatment known to have benefits

A. Single time zero

ﬂ Legend

: : : @X — X — I | | Longitudinal patient history Timezero  (X) Use of treatmentX

[ ]
=== Follow-up w Person in dataset

X e TS1: Start treatment

TS2: Do not start treatment



Sustained strategies: tree graph with 2+ timepoints Go to classpoint.app
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Censoring: focus only on branches of interest
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Turning our observational study into a sequentially randomized trial
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Turning our observational study into a sequentially randomized trial
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Treatment effect estimation in the weighted pseudopopulation
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1. Important distinction between point vs. sustained strategies

2. Always need to adjust for baseline confounding

3. If interested in sustained strategies, also need to adjust for time-varying confounding

4. We showed how weighting can be used to turn the observational data into a
randomized or sequentially randomized trial

5. Results are biased if there are unmeasured confounders




L Leiden University
C Medical Center

Questions

e.l.fu@lumc.nl




Censoring & weighting on a group-level

Artificial censoring

T

Censored during follow-
up if not following
strategy of interest

Weighting

e

Uncensored replicates (dark
color) are upweighted to
account for censored
replicates (light color) with
similar characteristics
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