

Confounding adjustment and estimating treatment effects

With models

Edouard Fu, PhD

Department of Clinical Epidemiology, LUMC

- 1. What your dataset needs to look like
- 2. Fitting models for the weights
- 3. Fitting the outcome model

1. Dataset requirements

Dataset in longitudinal format

ID	Time	L ₀	L _k	A ₀	A _k	Y	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0			
1	1	0	0	0	0	0	0			
1	2	0	1	0	1	0	0			
1	59	0	1	0	1	0	0			
2	0	1	1	1	1	0	0			
2	1	1	1	1	1	0	0			
2	2	1	1	1	1	0	0			
2	34	1	1	1	1	1	0			
3	0	0	0	0	0	0	0			
3	1	0	0	0	0	0	0			
3	2	0	0	0	0	0	1			

ID:	personal identifier
Time:	time (in months)
L _o :	baseline confounder
L _k :	time-varying confounder
A ₀ :	baseline treatment assignment
A _k :	time-varying treatment
Y:	all-cause mortality
C _k :	loss to follow-up
IPTW:	inverse probability of
	treatment weights
IPCW:	inverse probability of
	censoring weights
C _k _art:	artificial censoring

Temporality is key

ID	Time	L _o	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0			
1	1	0	0	0	0	0	0			
1	2	0	1	0	1	0	0			
1	59	0	1	0	1	0	0			
2	0	1	1	1	1	0	0			
2	1	1	1	1	1	0	0			
2	2	1	1	1	1	0	0			
2	34	1	1	1	1	1	0			
3	0	0	0	0	0	0	0			
3	1	0	0	0	0	0	0			
3	2	0	0	0	0	0	1			

Within each row, need to ensure temporality (L_k, A_k, Y)

2. Fitting weight models

IPTW (weights to adjust for time-varying confounding)

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0			
1	1	0	0	0	0	0	0			
1	2	0	1	0	1	0	0			
1	59	0	1	0	1	0	0			
2	0	1	1	1	1	0	0			
2	1	1	1	1	1	0	0			
2	2	1	1	1	1	0	0			
2	34	1	1	1	1	1	0			
3	0	0	0	0	0	0	0			
3	1	0	0	0	0	0	0			
3	2	0	0	0	0	0	1			

Goal: A_k is not predicted anymore by the past (L_k) at each timepoint How: Give everyone IPTW

$$W^{A} = \prod_{t=0}^{59} \frac{1}{Pr[A_{k}|\bar{C}_{k} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, \bar{A}_{k-1}, L_{0}, \bar{L}_{k}]}$$

Fit the following pooled logistic model: $logit[pr(A_k = 1 | \overline{C}_k = \overline{0}, \overline{Y}_{k-1} = \overline{0}, \overline{A}_{k-1}, = a, L_0, \overline{L}_k)] = \alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k$

R code

# fit pooled logistic model mod <- glm(A_k ~ Time + I(Time^2) + L_0 + L_k, family = binomial(), data = dat)	$\hat{f} = Pr(A_k = 1 \bar{C}_k = \bar{0}, \bar{Y}_{k-1} = \bar{0}, \bar{A}_{k-1}, L_0, \bar{L}_k) = \frac{1}{1 + e^{-(\alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k)}}$ $mod = logit(\hat{f}) = \alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k$
# predict dat\$probA.d <- predict(mod, type = 'response')	$\hat{f}(A_k \bar{C}_k = \bar{0}, \bar{Y}_{k-1} = \bar{0}, \bar{A}_{k-1} = \bar{a}_{k-1}, L_0 = l_0, \bar{L}_k = \bar{l}_k)$
# calculate weight dat\$w <- ifelse(dat\$A_k==1, (1/dat\$probA.d), (1/(1-dat\$probA.d)))	$\frac{1}{\hat{f}(A_k \bar{C}_k=\bar{0},\bar{Y}_{k-1}=\bar{0},\bar{A}_{k-1}=\bar{a}_{k-1},L_0=l_0,\bar{L}_k=\bar{l}_k)}$
<pre># calculate cumulative product of weights dat\$w_cum <- ave(dat\$w, dat\$id, FUN=function(x) cumprod(x))</pre>	$\widehat{W}^{A} = \prod_{t=0}^{59} \frac{1}{\widehat{f}(A_{k} \overline{C}_{k} = \overline{0}, \overline{Y}_{k-1} = \overline{0}, \overline{A}_{k-1} = \overline{a}_{k-1}, \\ L_{0} = l_{0}, \overline{L}_{k} = \overline{l}_{k})}$

IPTW (weights to adjust for time-varying confounding)

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0	1.5		
1	1	0	0	0	0	0	0	2.2		
1	2	0	1	0	1	0	0	3.8		
1	59	0	1	0	1	0	0	10.2		
2	0	1	1	1	1	0	0	1.3		
2	1	1	1	1	1	0	0	1.5		
2	2	1	1	1	1	0	0	2.6		
2	34	1	1	1	1	1	0	5.4		
3	0	0	0	0	0	0	0	1.2		
3	1	0	0	0	0	0	0	2.0		
3	2	0	0	0	0	0	1	NA		

Weights ensure L_k no longer predicts A_k for every timepoint k

"Association is causation"

Note that we are making a lot of assumptions!

mod <- glm(A_k ~ Time + I(Time^2) + L_0 + L_k, family = binomial(), data = dat)

We fit one model on the entire tree... Is it realistic we can properly model the entire treatment process with one parametric model?

- Could model time more flexibly (e.g. restricted cubic spline)
- Could add interactions (between time and confounders)
- Could fit separate models for each treatment group
- Could fit separate model for each timepoint

Model misspecification (bias-variance trade-off)

Assumptions about recency of confounders

If we only put most recent time-varying confounder value (+ baseline confounder) in our weighting model

Misspecified model leads to remaining red arrow after weighting, so residual confounding! (even if all time-varying confounders are measured)

Solutions

 Truncate the weights at the nth percentile (e.g. 99th) or at a certain value dat\$w.trunc <- ifelse(dat\$w>10, 10, dat\$w)

2. Use stabilized weights

$$SW_{v1}^{A} = \prod_{t=0}^{59} \frac{Pr[A_{k} | \overline{C}_{k} = \overline{0}, \overline{A}_{k-1}]}{Pr[A_{k} | \overline{C}_{k} = \overline{0}, \overline{D}_{k-1} = \overline{0}, \overline{A}_{k-1}, L_{0}, \overline{L}_{k}]} \qquad SW_{v2}^{A} = \prod_{t=0}^{59} \frac{Pr[A_{k} | \overline{C}_{k} = \overline{0}, \overline{A}_{k-1}, L_{0}]}{Pr[A_{k} | \overline{C}_{k} = \overline{0}, \overline{D}_{k-1} = \overline{0}, \overline{A}_{k-1}, L_{0}, \overline{L}_{k}]}$$

Fit two pooled logistic models:

Numerator: $logit[pr(A_k = 1 | \bar{C}_k = \bar{0}, \bar{Y}_{k-1} = \bar{0}, \bar{A}_{k-1}, = a, \bar{L}_k)] = \alpha_{0t}(+ \alpha_1^T L_0)$ Denominator: $logit[pr(A_k = 1 | \bar{C}_k = \bar{0}, \bar{Y}_{k-1} = \bar{0}, \bar{A}_{k-1}, = a, \bar{L}_k)] = \alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k$

Checking covariate balance at each timepoint

JW Jackson, Am J Epidemiol (2019), Diagnosing Covariate Balance Across Levels of Right-Censoring Before and After Application of Inverse-Probability-of-Censoring Weights

Repeat same process for IPCW

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0	1.5	1.1	
1	1	0	0	0	0	0	0	2.2	1.3	
1	2	0	1	0	1	0	0	3.8	1.4	
1	59	0	1	0	1	0	0	10.2	1.8	
2	0	1	1	1	1	0	0	1.3	1.2	
2	1	1	1	1	1	0	0	1.5	1.5	
2	2	1	1	1	1	0	0	2.6	1.8	
									•••	
2	34	1	1	1	1	1	0	5.4	2.0	
3	0	0	0	0	0	0	0	1.2	1.3	
3	1	0	0	0	0	0	0	2.0	2.7	
3	2	0	0	0	0	0	1	NA	NA	

$$W^{C} = \prod_{t=0}^{59} \frac{1}{Pr[C_{k}|\bar{C}_{k-1}=\bar{0},\bar{Y}_{k-1}=\bar{0},\bar{A}_{k-1},L_{0},\bar{L}_{k}]}$$

Fit the following pooled logistic model: $logit[pr(C_k = 1 | \overline{C}_{k-1} = \overline{0}, \overline{Y}_{k-1} = \overline{0}, \overline{A}_{k-1} = a, L_0, \overline{L}_k)] = \alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k + \alpha_3 A_{k-1}$

3. Fitting outcome models

Artificial censoring

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0	1.5	1.1	0
1	1	0	0	0	0	0	0	2.2	1.3	0
1	2	0	1	0	1	0	0	3.8	1.4	1
1	59	0	1	0	1	0	0	10.2	1.8	1
2	0	1	1	1	1	0	0	1.3	1.2	0
2	1	1	1	1	1	0	0	1.5	1.5	0
2	2	1	1	1	1	0	0	2.6	1.8	0
2	34	1	1	1	1	1	0	5.4	2.0	0
3	0	0	0	0	0	0	0	1.2	1.3	0
3	1	0	0	0	0	0	0	2.0	2.7	0
3	2	0	0	0	0	0	1	NA	NA	0

Determine artificial censoring based on assigned strategy:

"Start treatment and always use" vs. "Never start treatment"

Fit the outcome model

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0	1.5	1.1	0
1	1	0	0	0	0	0	0	2.2	1.3	0
1	2	0	1	0	1	0	0	3.8	1.4	1
1	59	0	1	0	1	0	0	10.2	1.8	1
2	0	1	1	1	1	0	0	1.3	1.2	0
2	1	1	1	1	1	0	0	1.5	1.5	0
2	2	1	1	1	1	0	0	2.6	1.8	0
2	34	1	1	1	1	1	0	5.4	2.0	0
3	0	0	0	0	0	0	0	1.2	1.3	0
3	1	0	0	0	0	0	0	2.0	2.7	0
3	2	0	0	0	0	0	1	NA	NA	0

Fit the following **weighted** pooled logistic model:

$$\begin{split} logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{C}_{k-1}(art) = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{0})] = \\ \alpha_{0t} + \alpha_{1}A_{0} \end{split}$$

Then, the marginal ln(HR) for treatment is given by α_1 (under the assumption that outcome incidence is <10% in each time interval)

If baseline confounders were used in the numerator of the stabilized weights, then they have to be added to the outcome model:

$$logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{C}_{k-1}(art) = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{0}, \underline{L}_{0})] = \alpha_{0t} + \alpha_{1}A_{0} + \alpha_{2}^{T}\underline{L}_{0}$$

R code

$$logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{C}_{k-1}(art) = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{0})] = \alpha_{0t} + \alpha_{1}A_{0}$$

```
# fit outcome model
outcome_mod <- glm(Y_k ~ Time + I(Time^2) + A_0 + L_0,
family = binomial(), weight = IPTW*IPCW,
data = subset(dat, C_k==0 & C_k_art == 0))</pre>
```

obtain hazard ratio
exp(coef(outcome_mod))

Assessing effect modification by baseline variable

$$logit[pr(Y_k = 1 | \bar{C}_{k-1} = \bar{0}, \bar{C}_{k-1}(art) = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_0, V)] = \alpha_{0t} + \alpha_1 A_0 + \alpha_2 V + \alpha_3 A_0 V$$

fit outcome model
outcome_mod <- glm(Y_k ~ Time + I(Time^2) + A_0 + V + A_0:V,
family = binomial(), weight = IPTW*IPCW,
data = subset(dat, C_k==0 & C_k_art == 0))</pre>

Need to account for use of IPTW/IPCW (and perhaps repeated use of same individual through sequential trials or cloning)

Solutions:

```
1. Robust standard error (e.g. survey package in R)
outcome_mod <- svyglm(Y_k ~ Time + I(Time^2) + A_0 + L_0,
family = binomial(), design = svydesign(id = ~id, weights = ~IPTW*IPCW,
data = subset(dat, C_k==0 & C_k_art == 0))
exp(confint(outcome_mod))
```

2. Nonparametric bootstrap

Questions

e.l.fu@lumc.nl

- Dose-response models
- Constructing inverse probability weighted survival curves

- Competing risks
- Implementing clone-censor-weight
- Implementing sequential trials

4. Dose-response models

Fitting a dose-response model instead of censoring

Fitting a dose-response model instead of censoring

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art	A _{tot}
1	0	0	0	0	0	0	0	1.5	1.1	p	0
1	1	0	0	0	0	0	0	2.2	1.3	Q	0
1	2	0	1	0	1	0	0	3.8	1.4	1	1
1	59	0	1	0	1	0	0	10.2	1.8	1	23
2	0	1	1	1	1	0	0	1.3	1.2	0	1
2	1	1	1	1	1	0	0	1.5	1.5	0	2
2	2	1	1	1	1	0	0	2.6	1.8	0	3
2	34	1	1	1	1	1	0	5.4	2.0	0	33
3	0	0	0	0	0	0	0	1.2	1.3	C	0
3	1	0	0	0	0	0	0	2.0	2.7	þ	0
3	2	0	0	0	0	0	1	NA	NA	0	0

Censoring vs. dose-response model

Artificial censoring approach

Fit the following **weighted** pooled logistic model:

 $logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{C}_{k-1}(art) = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{0})] = \alpha_{0t} + \alpha_{1}A_{0}$

HR for always treat vs. never treat: e^{α_1}

Dose-response approach

Fit the following **weighted** pooled logistic model:

 $logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{k})] = \gamma_{0t} + \gamma_{1}A_{tot} + \gamma_{2}(A_{tot})^{2}$

HR for each additional month of treatment: $e^{\gamma_1 A_{tot} + \gamma_2 (A_{tot})^2}$

HR for always treat vs. never treat: $e^{\gamma_1 * 60 + \gamma_2 * 60^2}$

Different dose-response models

Total duration of treatment

$$logit[pr(Y_k = 1 | \bar{C}_{k-1} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_k)] = \gamma_{0t} + \gamma_1 \sum_{k=0}^{t} A_k + \gamma_2 \left(\sum_{k=0}^{t} A_k\right)^2$$

Average duration of treatment

$$logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{k})] = \delta_{0t} + \delta_{1} \left(\frac{1}{t} \sum_{k=0}^{t} A_{k}\right) + \delta_{2} \left(\frac{1}{t} \sum_{k=0}^{t} A_{k}\right)^{2}$$

Sometimes dose-response model not needed

Hazard at each timepoint k depends on cumulative treatment history

$$logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{k})] =$$
$$\gamma_{0t} + \gamma_{1} \sum_{k=0}^{t} A_{k} + \gamma_{2} \left(\sum_{k=0}^{t} A_{k}\right)^{2}$$

Hazard at each timepoint k only depends on most recent treatment

$$logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{k})] = \beta_{0t} + \beta_{1}A_{k}$$

- Danaei G, Rodríguez LA, Cantero OF, Logan R, Hernán MA. Observational data for comparative effectiveness research: an emulation of randomised trials of statins and primary prevention of coronary heart disease. Stat Methods Med Res. 2013 Feb;22(1):70-96. doi: 10.1177/0962280211403603. Epub 2011 Oct 19. PMID: 22016461; PMCID: PMC3613145.
- Toh S, Hernán MA. Causal inference from longitudinal studies with baseline randomization. Int J Biostat. 2008 Oct 19;4(1):Article 22. doi: 10.2202/1557-4679.1117. PMID: 20231914; PMCID: PMC2835458.

5. Parametric estimation of weighted survival curves

Making survival curves

ID	Time	L ₀	L _k	A ₀	A _k	Y _k
1	0	0	0	0	0	0
1	1	0	0	0	0	0
1	2	0	1	0	1	0
1	59	0	1	0	1	0
2	0	1	1	1	1	0
2	1	1	1	1	1	0
2	2	1	1	1	1	0
2	34	1	1	1	1	1
3	0	0	0	0	0	0
3	1	0	0	0	0	0
3	2	0	0	0	0	0

A: — 0 — 1

How is survival calculated?

ID	Time	L ₀	L _k	A ₀	A _k	Y _k
1	0	0	0	0	0	0
1	1	0	0	0	0	0
1	2	0	1	0	1	0
1	59	0	1	0	1	0
2	0	1	1	1	1	0
2	1	1	1	1	1	0
2	2	1	1	1	1	0
2	34	1	1	1	1	1
3	0	0	0	0	0	0
3	1	0	0	0	0	0
3	2	0	0	0	0	0

Survival

$$Pr[Y_k = 0] = \prod_{m=1}^{k} Pr[Y_m = 0 | Y_{m-1} = 0]$$

$$Pr[Y_2 = 0] = Pr[Y_2 = 0 | Y_1 = 0] * Pr[Y_1 = 0]$$

$$= 0.95 * 0.90 = 0.855$$

Hazard

 $\Pr[Y_k = 1 | Y_{k-1} = 0]$

 $\Pr[Y_2 = 1 | Y_1 = 0] = \frac{\text{no. of deaths during interval 2}}{\text{no. of people alive during interval 2}}$ = 0.05 $\Pr[Y_2 = 0 | Y_1 = 0] = 1 - \Pr[Y_2 = 1 | Y_1 = 0] = 1 - 0.05 = 0.95$

Calculating survival from hazards

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	C _k	IPTW	IPCW	C _k _art
1	0	0	0	0	0	0	0	1.5	1.1	0
1	1	0	0	0	0	0	0	2.2	1.3	0
1	2	0	1	0	1	0	0	3.8	1.4	1
1	59	0	1	0	1	0	0	10.2	1.8	1
2	0	1	1	1	1	0	0	1.3	1.2	0
2	1	1	1	1	1	0	0	1.5	1.5	0
2	2	1	1	1	1	0	0	2.6	1.8	0
2	34	1	1	1	1	1	0	5.4	2.0	0
3	0	0	0	0	0	0	0	1.2	1.3	0
3	1	0	0	0	0	0	0	2.0	2.7	0
3	2	0	0	0	0	0	1	NA	NA	0

Survival from hazard

$$\Pr[Y_k = 0] = \prod_{\substack{m=1 \ k}}^k \Pr[Y_m = 0 | Y_{m-1} = 0]$$
$$= \prod_{\substack{m=1 \ m=1}}^k (1 - \Pr[Y_m = 1 | Y_{m-1} = 0])$$

Estimating hazards from a <u>weighted</u> logistic model

 $logit[pr(Y_{k+1} = 1 | Y_k = 0, C_k = 0, C_{k_art} = 0, A_0)] = \alpha_{0,k} + \alpha_1 A_0 + \alpha_2 A_0 * k + \alpha_3 A_0 * k^2$

where $\alpha_{0,k} = \alpha_0 + \alpha_4 * k + \alpha_5 * k^2$

Use model to predict hazards at each timepoint

Time	Time ²	A ₀	h_k	S_k	S_k_cum
0	0	1			
1	1	1			
2	4	1			
59	3481	1			

Dataset 1: Prediction under **always treatment**

$$logit[pr(Y_{k+1} = 1 | Y_k = 0, C_k = 0, C_{k_art} = 0, A_0 = 1)] = \alpha_{0,k} + \alpha_1 + \alpha_2 * k + \alpha_3 * k^2$$

Time	Time ²	A ₀	h_k	S_k	S_k_cum
0	0	0			
1	1	0			
2	4	0			
59	3481	0			

Dataset 2: Prediction under never treatment

$$logit[pr(Y_{k+1} = 1 | Y_k = 0, C_k = 0, C_{k_art} = 0, A_0 = 1)] = \alpha_{0,k}$$

R code (1/2)

fit of weighted hazards model

outcome_mod <- glm(Y_k==1 ~ Time + Timesq + A_0 + I(A_0*Time) + I(A_0*Timesq),

```
family = binomial(), weight = IPTW*IPCW,
```

data = subset(dat, C_k==0 & C_k_art == 0))

creation of "treated" and "untreated" empty datasets dat_notreat <- data.frame(cbind(0, seq(0, 59), (seq(0, 59))^2)) dat_treat <- data.frame(cbind(1, seq(0, 59), (seq(0, 59))^2))</pre>

colnames(dat_notreat) <- c("A_0", "Time", "Timesq")
colnames(dat_treat) <- c("A_0", "Time", "Timesq")</pre>

Time	Time ²	A ₀	h_k	S_k	S_k_cum
0	0	1			
1	1	1			
2	4	1			
59	3481	1			

R code (2/2)

Calculating hazard in each person-month

dat_notreat\$h_k <- predict(outcome_mod, dat_notreat, type="response")
dat_treat\$h_k <- predict(outcome_mod, dat_treat, type="response")</pre>

Calculating survival in each person-month

dat_notreat\$S_k <- 1-dat_notreat\$h_k
dat_treat\$S_k <- 1- dat_treat\$h_k</pre>

Calculating cumulative survival

dat_notreat\$S_k_cum <- cumprod(dat_notreat\$ S_k)
dat_treat\$S_k_cum <- cumprod(dat_treat\$S_k)</pre>

Time	Time ²	A ₀	h_k	S_k	S_k_cum
0	0	1			
1	1	1			
2	4	1			
•••					
59	3481	1			

- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC. Chapter 17 Causal survival analysis
- https://remlapmot.github.io/cibookex-r/causal-survival-analysis.html (R code)
- Cole SR, Hernán MA. Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed. 2004 Jul;75(1):45-9. doi: 10.1016/j.cmpb.2003.10.004. PMID: 15158046.

6. Competing risks

What is a competing event?

 A competing (risk) event is any event that makes it impossible for the event of interest to occur

• E.g., if interested in the effect of SGLT-2 inhibitors vs. placebo on dialysis, then death is a competing event

• Similarly applies to randomized trials and observational studies

How to handle competing events?

1. Total effect of treatment $Pr[Y^{a=1} = 1] vs. Pr[Y^{a=0} = 1]$

"What is the total effect of treatment on the outcome, part of which may be mediated by the competing event?" **2.** Controlled direct effect of treatment $\Pr[Y^{a=1,d=0} = 1] vs. \Pr[Y^{a=0,d=0} = 1]$

"What is the direct effect of treatment on the outcome, in a world where we eliminate the competing event?"

1. Total effect of treatment $Pr[Y^{a=1} = 1] vs. Pr[Y^{a=0} = 1]$ $A \rightarrow D \rightarrow Y$

"What is the total effect of treatment on the outcome, part of which may be mediated by the competing event?"

- Can be easily identified in a perfect randomized trial
- However, does not answer question about mechanism: if we find Pr[Y^{a=1} = 1] < Pr[Y^{a=0} = 1], is this due to treatment A lowering Y, due to A increasing D (thereby preventing A), or a combination of both?

$$A \qquad D \longrightarrow Y \qquad A \xrightarrow{+} D \longrightarrow Y \qquad A \xrightarrow{+} D \longrightarrow Y$$

Most extreme example

- We conduct a RCT testing a new pill vs. placebo on the 5-year risk of dialysis
 - Assume that the trial is perfect (infinite sample size, perfect adherence, no loss to followup etc)

- After completing the trial, we find Pr[Y = 1|A = 1] = 0 and Pr[Y = 1|A = 0] = 0.4
- We conclude that the new pill is very effective in preventing dialysis
- However, the pill is poisonous and kills those that ingest it within 1 minute
- Are we still interested in the total effect?

Less extreme example

Dataset to fit the **outcome model**

Dataset to fit the **weight model**

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	IPTW	D _k
1	0	0	0	0	0	0	1.5	0
1	1	0	0	0	0	0	2.2	0
1	2	0	1	0	0	0	3.8	0
1	3	0	1	0	0	0	4.2	1
1	4	0	NA	0	NA	0	4.2	1
1	5	0	NA	0	NA	0	4.2	1
1	59	0	NA	0	1	0	4.2	1

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	IPTW	D _k
1	0	0	0	0	0	0	1.5	0
1	1	0	0	0	0	0	2.2	0
1	2	0	1	0	0	0	3.8	0
1	3	0	1	0	0	0	4.2	1

Controlled direct effect

2. Controlled direct effect of treatment $\Pr[Y^{a=1,d=0} = 1] vs. \Pr[Y^{a=0,d=0} = 1]$

"What is the direct effect of treatment on the outcome, in a world where we eliminate the competing event?"

- Helps to elucidate mechanisms
- However, also difficult to interpret: "a world where we eliminate the competing event" → How are we going to eliminate this in the real world? What is this potential intervention?
- Additional assumptions are required to identify $Y^{a,d=0}: Y^{a,d=0} \perp A$ and $Y^{a,d=0} \perp D$

Controlled direct effect

- Competing event is considered a censoring event: value of Y^{a=1,d=0} is unknown after competing event occurs
- "A censoring event is any event occurring in the study that ensures the values of all future counterfactual outcomes under treatment level *a* that are of interest are unknown/missing, even for an individual who actually received treatment level *a*."
- Thus, if you censor for competing events you are implicitly targeting the CDE
- We try to simulate what would have happened, had the competing event not occurred
 - Intuitively, we upweight people without the competing event who have similar characteristics as those with the competing event

Assumptions for censoring

- Unbiased estimation requires absence of backdoor paths between A and Y_4 and no backdoor paths between D_3 and Y_4 (data shown below are from a randomized controlled trial)
- Use IPCW to remove arrow between L₂ and D₃

Violation of assumptions

If there are unmeasured common causes of D_3 and Y_4 , then we cannot validly estimate the controlled direct effect

How to estimate the controlled direct effect

Dataset format

ID	Time	L ₀	L _k	A ₀	A _k	Y _k	IPTW	D _k	IPCW
1	0	0	0	0	0	0	1.5	0	1.1
1	1	0	0	0	0	0	2.2	0	1.3
1	2	0	1	0	0	0	3.8	0	1.8
1	3	0	1	0	0	0	4.2	1	2.1

Step 1: Fit weight model for censoring due to competing event

$$W^{D} = \prod_{t=0}^{59} \frac{1}{Pr[D_{k}|\overline{D}_{k-1} = \overline{0}, \overline{Y}_{k-1} = \overline{0}, \overline{A}_{k-1}, L_{0}, \overline{L}_{k}]}$$

Step 2: Use this model to calculate IPCW

Step 3: Fit outcome model adding these additional IPCW (on top of IPTW and IPCW for loss-to-follow-up)

Introductory:

 Rojas-Saunero LP, Young JG, Didelez V, Ikram MA, Swanson SA. Considering Questions Before Methods in Dementia Research With Competing Events and Causal Goals. Am J Epidemiol. 2023 Aug 4;192(8):1415-1423. doi: 10.1093/aje/kwad090. PMID: 37139580; PMCID: PMC10403306.

 Mansournia MA, Nazemipour M, Etminan M. A practical guide to handling competing events in etiologic time-to-event studies. Glob Epidemiol. 2022 Jul 11;4:100080. doi: 10.1016/j.gloepi.2022.100080. PMID: 37637022; PMCID: PMC10446108.

Technical:

Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA. A causal framework for classical statistical estimands in failure-time settings with competing events. Stat Med. 2020 Apr 15;39(8):1199-1236. doi: 10.1002/sim.8471. Epub 2020 Jan 27. PMID: 31985089; PMCID: PMC7811594.

Separable effects

- Decompose medication into two separable components (N and O): one only affecting competing event death, the other component affecting only the outcome of interest
 - E.g. with the poisonous pill, one component (ACE) directly reduces risk of dialysis, whereas the other component (K+) leads to cardiac arrest and death
- The effect of this new medication is our separable direct effect: E[Y^{n=0,o=1}]-E[Y^{n=0,o=0}]
- Using data from a trial of the original medication to try to emulate the trial of a hypothetical yet-to-xist treatment

 $Y^{a=1} = Y^{n=1,o=1}$ $Y^{a=0} = Y^{n=0,o=0}$ $Y^{n=0,o=1}$ can be identified by the mediation formula

and is equivalent to $Y^{a=1, Ma=0}$

- Define separable direct effects/indirect effects in potential outcomes notation
- We can use information on A, D and Y to identify the separable effects of N and O
 - Assumptions: (i) no unmeasured common causes of mediator D and outcome Y and (ii) no direct effects of component O on mediator D and of component N on outcome Y
- This is an interventionist way of thinking

G-formula for identification of Y^{n=0,o=1}

- In our randomized trial, where we randomize to A=1 and A=0, we can readily identify Y^{n=1,o=1} (because Y^{n=1,o=1} = Y^{a=1}) and we can also readily identify Y^{n=0,o=0} (because Y^{n=0,o=0} = Y^{a=0})
- However, nobody in our population has Y^{n=0,o=1}, but we need this quantity since we are interested in the causal effect Y^{n=0,o=1}-Y^{a=0}
- If data on N and O were available, then we could identify E[Y^{n=0,o=1}] with

$$E[Y^{n=0,o=1}] = \sum_{m} E[Y|O = 1, M = m] \Pr[M = m, N = 0]$$

However, we don't have data about N and O. Nevertheless, O = 1 iff A = 1, and N = 0 iff A = 0, so we can
replace M and N by A! There is a deterministic relationship between A and N/O

$$E[Y^{n=0,o=1}] = \sum_{m} E[Y|A = 1, M = m] \Pr[M = m, A = 0]$$

7. Clone-censor-weight implementation

Step 0. Fit the following pooled logistic model on the dataset <u>before cloning and censoring</u>: $logit[pr(A_k = 1 | \overline{C}_k = \overline{0}, \overline{Y}_{k-1} = \overline{0}, \overline{A}_{k-1}, = a, \overline{L}_k)]$ $= \alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k$

(We already know how to do this)

	C _k _art	IPTW	Y _k	A _k	A ₀	L _k	L ₀	Time	ID
			0	0	NA	0	0	0	1
			0	0	NA	0	0	1	1
			0	1	NA	1	0	2	1
			0	1	NA	1	0	59	1
/			0	1	NA	1	1	0	2
١			0	1	NA	1	1	1	2
١			0	1	NA	1	1	2	2
			1	1	NA	1	1	34	2
			0	0	NA	0	0	0	3
			0	0	NA	0	0	1	3
			0	0	NA	0	0	2	3

	ID	Time	L ₀	L _k	A ₀	A _k	Y _k	IPTW	C _k _art
	1	0	0	0	0	0	0		
	1	1	0	0	0	0	0		
	1	2	0	1	0	1	0		
	1	59	0	1	0	1	0		
	2	0	1	1	0	1	0		
1	2	1	1	1	0	1	0		
•	2	2	1	1	0	1	0		
	2	34	1	1	0	1	1		
	3	0	0	0	0	0	0		
	3	1	0	0	0	0	0		
	3	2	0	0	0	0	0		

	ID	Time	Lo	L _k	A ₀	A _k	Y _k	IPTW	C _k _art
	1	0	0	0	1	0	0		
	1	1	0	0	1	0	0		
	1	2	0	1	1	1	0		
	1	59	0	1	1	1	0		
1	2	0	1	1	1	1	0		
•	2	1	1	1	1	1	0		
	2	2	1	1	1	1	0		
	2	34	1	1	1	1	1		
	3	0	0	0	1	0	0		
	3	1	0	0	1	0	0		
	3	2	0	0	1	0	0		

Step 1. **Duplicate the dataset**, and assign each individual to each of the strategies he is compatible with (cloning)

Step 2. **Artificially censor** if and when the individual no longer follows his assigned strategy. Next, remove the rows that are artificially censored

(here, illustrated on one of the cloned datasets)

Step 3. **Calculate the IPTW** (we could also call them IPCW) using the model we previously fit on the remaining rows

Step 4. Fit the <u>weighted</u> outcome model using pooled logistic regression:

$$logit[pr(Y_{k} = 1 | \bar{C}_{k-1} = \bar{0}, \bar{C}_{k-1}(art) = \bar{0}, \bar{Y}_{k-1} = \bar{0}, A_{0})] = \alpha_{0t} + \alpha_{1}A_{0}$$

Alternative implementation

Implementation 1:

Step 0: Fit weight model on dataset before cloning/censoring

Step 1: Clone/duplicate dataset and assign to strategies

Step 2: Artificially censor

Step 3: Calculate weights

Step 4: Fit outcome model

Implementation 2:

Step 1: Clone/duplicate dataset and assign to strategies

Step 2: Artificially censor

Step 3a: Estimate weight models (separately for each cloned dataset)

Step 3b: Calculate weights

Step 4: Fit outcome model

Both approaches are equivalent non-parametrically

Difference between implementations

8. Sequential trial implementation

Target trial specification

	Specified target trial
Eligibility criteria	• 55-84 years
	• No history of coronary heart disease, stroke, peripheral vascular disease,
	heart failure, schizophrenia, dementia
	2 years of continuous recording in database
	January 2000-November 2006
	No previous use of statins
Treatment	1. Start statins and always use
strategies	2. Never start statins

Emulating this trial

	Specified target trial
Eligibility criteria	• 55-84 years
	• No history of coronary heart disease, stroke, peripheral vascular disease,
	heart failure, schizophrenia, dementia
	 2 years of continuous recording in database
	 January 2000-November 2006
	No previous use of statins
Treatment	1. Start statins and always use
strategies	2. Never start statins

- First trial starts January 2000: check eligibility and do treatment assignment
- Second trial starts February 2000: check eligibility and do treatment assignment Etc. etc. for a total of 83 trials

People can be eligible for multiple trials and hence have multiple time zeros

Sequential trial design

Data format (longitudinal history) – weight models

Table A2. Data for three hypothetical individuals

Individual	Trial	Eligible	Initiator	Current user	Baseline LDL(mmol/L)	LDL(mmol/L)	Month CHD	Month dead
1	12		0	0	2.47	2.47	0	14
I	13	I	0	0	2.47	2.47	0	14
2	24	1	0	0	2.77	2.77	26	26
2	25	I	I	I	2.77	2.77	26	26
2	26	0	0	I	2.77	2.84	26	26
3	43	1	I	I	2.88	2.88	0	0
3	44	0	0	1	2.88	2.88	0	0
3	45	0	0	0	2.88	2.77	0	0
3	:	:	:	:	2.88	:	0	0
3	67	0	0	0	2.88	2.71	0	0
3	68	1	0	0	2.88	2.71	0	0
3	69	I.	I	I	2.88	2.73	0	0
3	70	0	0	I	2.88	2.73	0	0

$$W_{m+t}^{A} = \prod_{k=m}^{m+t} \frac{1}{\Pr[A_{k} | \bar{C}_{k} = \bar{0}, \bar{Y}_{k-1} = \bar{0}, \bar{A}_{k-1}, L_{0}, \bar{L}_{k}]}$$

Fit the following logistic model: $logit[pr(A_k = 1 | \overline{C}_k = \overline{0}, \overline{Y}_{k-1} = \overline{0}, \overline{A}_{k-1}, = a, L_0, \overline{L}_k)] = \alpha_{0t} + \alpha_1^T L_0 + \alpha_2^T L_k$

Expand dataset and create replicates

									Individual	Trial (m)	Follow-up month (t)	Eligible (E _m)	Initiator (A _m)	Current user (A_{m+t})	Baseline LDL (<i>L_m</i>)	Time-varying LDL (<i>L_{m+t}</i>)	Event (D_{m+t})
Table A2	. Dat	a for th	ree hypoth	etical individua	ls				Ι	12	0	I	0	0	2.47	2.47	0
Individual	Trial	Eligible	Initiator	Current user	Baseline LDL(mmol/L)	LDL(mmol/L)	Month CHD	Month dead	I	12	I	I.	0	0	2.47	2.47	0
	10		0	0	2.47	2.47	•		I.	13	0	I.	0	0	2.47	2.47	0
1	12		0	0	2.47	2.47	0	14	2	24	0	I	0	0	2.77	2.77	0
ן ר	13 24	1	0	0	2.47	2.47	24	14	2	24	I	1	0	I	2.77	2.77	0
2	2 4 25		U I	0	2.77	2.77	26	26	2	24	2	I.	0	I	2.77	2.84	I
2	25	0	0	1	2.77	2.77	26	26	2	25	0	1	1 I	I	2.77	2.77	0
3	43	ĩ	Ŭ I	1	2.88	2.88	0	0	2	25	I	1	I	I	2.77	2.84	I.
3	44	0	0	i	2.88	2.88	0	0	3	43	0	I.	I	I	2.88	2.88	0
3	45	0	0	0	2.88	2.77	0	0	3	43	I	1	I.	I	2.88	2.88	0
3	:	:	:	:	2.88	:	0	0	3	43	2	1	I	0	2.88	2.77	0
3	67	0	0	0	2.88	2.71	0	0	3	43	:	:	:	:	:	:	:
3	68	I.	0	0	2.88	2.71	0	0	3	43	26	I.	I	I	2.88	2.73	0
3	69	1	1	I	2.88	2.73	0	0	3	43	27	I	I	I	2.88	2.73	
3	70	0	0	1	2.88	2.73	0	0	3	68	0	I.	0	0	2.71	2.71	0
									3	68	I	I	0	I	2.71	2.73	0
									3	68	2	I.	0	I	2.71	2.73	
									3	69	0	I	I	I	2.73	2.73	0
									3	69	I	I	I	I	2.73	2.73	

Table A3. The expanded dataset for the three hypothetical individuals in Table A2

Artificially censor & Calculate weights on expanded dataset

Individual	Trial (m)	Follow-up month (t)	Eligible (E _m)	Initiator (A _m)	Current user (A _{m+t})	Baseline LDL (<i>L_m</i>)	Time-varying LDL (L _{m+t})	Event (D _{m+t})	C_k_art	IPTW
	12	0	I	0	0	2.47	2.47	0		
I	12	I	I	0	0	2.47	2.47	0		
I.	13	0	I	0	0	2.47	2.47	0		
2	24	0	I	0	0	2.77	2.77	0		
2	24	I	_ I _ [0		2.77	2.77	0		
2	24	2	I	0		2.77	2.84	I.		
2	25	0	I	I	I	2.77	2.77	0		
2	25	I	I	I.	I	2.77	2.84	I		
3	43	0	I	I.	I	2.88	2.88	0		
3	43	I	I.	I.	I	2.88	2.88	0		
3	43	2	- I - [0	2.88	2.77	0		
3	43	:	:	:	:	:	:	:		
3	43	26	I	I.	I	2.88	2.73	0		
3	43	27	I.	I	I	2.88	2.73			
3	68	0	I	0	0	2.71	2.71	0		
3	68	I	I	0	I	2.71	2.73	0		
3	68	2	I	0	I	2.71	2.73			
3	69	0	I	I	I	2.73	2.73	0		
3	69	Ι	I	I	Ι	2.73	2.73			

Table A3.	The expanded	dataset for the thi	ee hypothetical	l individuals in	Table A2
-----------	--------------	---------------------	-----------------	------------------	----------

Fit weighted outcome model

$$logit[pr(Y_{m+t+1} = 1 | \bar{C}_{m+t+1}(art) = \bar{0}, \bar{Y}_{m+t} = \bar{0}, A_m)] = \alpha_{0,m+t} + \alpha_1 A_m$$

where
$$\alpha_{0,m+t} = \alpha_0 + \alpha_2 * m + \alpha_3 * m^2 + \alpha_4 * t + \alpha_5 * t^2$$

Table A3. The expanded dataset for the three hypothetical individuals in Table A2

Individual	Trial (m)	Follow-up month (t)	Eligible (E _m)	Initiator (A _m)	Current user (A _{m+t})	Baseline LDL (<i>L_m</i>)	Time-varying LDL (L _{m+t})	Event (D _{m+t})
1	12	0	I	0	0	2.47	2.47	0
1	12	I.	I	0	0	2.47	2.47	0
1	13	0	I	0	0	2.47	2.47	0
2	24	0	I	0	0	2.77	2.77	0
2	24	I	I	0	I	2.77	2.77	0
2	24	2	I.	0	I	2.77	2.84	I.
2	25	0	I	I	I	2.77	2.77	0
2	25	I.	I	I	I	2.77	2.84	I
3	43	0	I	I.	I.	2.88	2.88	0
3	43	I	I.	1	I	2.88	2.88	0
3	43	2	I	I	0	2.88	2.77	0
3	43	:	:	:	:	:	:	:
3	43	26	I	I	I	2.88	2.73	0
3	43	27	I	I	I	2.88	2.73	
3	68	0	I	0	0	2.71	2.71	0
3	68	I.	I	0	I	2.71	2.73	0
3	68	2	I.	0	I	2.71	2.73	
3	69	0	I	I	I	2.73	2.73	0
3	69	I	I	I	I	2.73	2.73	