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1. Dataset requirements




Dataset in longitudinal format
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IPCW:

C,_art:

personal identifier

time (in months)
baseline confounder
time-varying confounder
baseline treatment assignment
time-varying treatment
all-cause mortality

loss to follow-up

inverse probability of
treatment weights
inverse probability of
censoring weights
artificial censoring




Temporality is key
1D [Time L, LAy LAY, |G | IPTW | IPCW | G art_
1 O O 0 O O O O

Within each row, need to ensure
temporality (L, A, Y)

1 1 o 0 O O O O
1 2 o 1 0 1 0 O
1 59 o 1 0 1 0 O
2 0 1 1 1 1 0 O
2 1 1 1 1 1 0 O
2 2 1 1 1 1 0 O
2 34 1 1 1 1 1 O
3 0 O 0 O O O O
3 1 o 0 O O O O
3 2 o 0 O O O 1
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2. Fitting weight models




IPTW (weights to adjust for time-varying confounding /

m-mm Goal: A is not predicted anymore by

the past (L,) at each timepoint
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How: Give everyone IPTW
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WA = l_[ _
=0 Pr[Ak|Ck =

Fit the following pooled logistic model:

logit[pr(4, = 1|C, = 0, Yk 1 =0, /Tk L=a,Lo,Ly)] =
Qor + 1 LO + asz
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R code

# fit pooled logistic model
mod <- gIm(A_k ~ Time + |(Time”~2) + L_ 0 + L Kk,
family = binomial(), data = dat)

f=Pr(Ax =1|C, = 6r17R—1 =0,Ag-1,Lo, Lx) =

1 + e—(@oe+ afLo+ajLy)

mod = logit(f) = ap; + al Ly + all,

# predict
datSprobA.d <- predict(mod, type = 'response’)

# calculate weight
datSw <- ifelse(datSA_k==1, (1/datSprobA.d),
(1/(1-datSprobA.d)))

# calculate cumulative product of weights
datSw_cum <- ave(datSw, datSid, FUN=function(x)
cumprod(x))

—

W =

t=0 f(Aklék — 6: Yk—l_z 6: /Ek—l — C_lk—lt
Lo =1y, L = ly)



IPTW (weights to adjust for time-varying confoundin

1D [ Time L, |L, LA |A Y, |G, |IPTW |IPCW [C art_
1 0 o 0 O O O 0 15

1 1 o 0 O O O 0 22
1 2 o 1 0 1 0O O 38
1 59 o 1 0 1 0 0 10.2
2 0 1 1 1 1 0 0 13
2 1 1 1 1 1 0 0 15
2 2 1 1 1 1 0 0 2.6
2 34 1 1 1 1 1 0 54
3 0 o 0 O O O 0 12
3 1 o 0 O O O o0 20
3 2 O 0 O O O 1 NA




Weights ensure L, no longer predicts A, for every timepoint /

“Association is causation”




Note that we are making a lot of assumptions!

_——== mod<-gIm(A_k ~ Time + I(Time”2) + L_0 + L_k, family = binomial(),
< T = data=dat)
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We fit one model on the entire tree... Is it realistic we can properly
X .~ == model the entire treatment process with one parametric model?
S =e.=— = e« Could model time more flexibly (e.g. restricted cubic spline)

L]
.
.
......
™
~

 Could add interactions (between time and confounders)

200.000

~t.=— = ¢ Could fit separate models for each treatment group
" e Could fit separate model for each timepoint

=  Model misspecification (bias-variance trade-off)




Assumptions about recency of confounders /

If we only put most recent time-varying confounder value (+ baseline confounder) in our
weighting model

Before weighting After weighting
P — I
L, ~ Ay L, ~ A, Ly~ Aj Y L A L, A, Ly Aj Y

Misspecified model leads to remaining red arrow after weighting, so residual confounding!
(even if all time-varying confounders are measured)



Weights can become very large /

Solutions

1. Truncate the weights at the nt" percentile (e.g. 99t") or at a certain value
datSw.trunc <- ifelse(datSw>10, 10, datSw)

2. Use stabilized weights

59 — S 59 _ —
WA — 1_[ Pr{A|C, = 0,Ay4] A 1_[ Pr[Ag|Cy = 0,Ay_q,Lo]
Wyi = == —— = SWyz = — =
_LPr[A;|C = 0,D—1 = 0,Ag_1, Lo, L] Pr[Ak|Cyx = 0,D—1 = 0, Ay_1, Lo, L]
Fit two pooled logistic models:
Numerator: logit[pr(4; = 1|C, = 0,Y4—1 = 0,A,_1,= a,L;)] = ap:(+ al Ly)
Denominator: logit[pr(4, = 1|C, = 0, _k—1 =0,A_,=a, L) =ap + ally + all,



Checking covariate balance at each timepoint

A) Month 1 Month 6 Month 12
Change in Total PANSS - R 04> XD
CGl Severity 4 O |- | O A\
Calgary Depression 4 O | law D
Simpson-Agnes EPS A In| aa OAfN
% Change in Weight 1 O o @y
Quality of Life{ '@ @\ OoA
- Drug Use Scale 4 O] [\ A oO
Change in Total PANSS 40O \ CS wAS
CGl Severity 1 0O O AoO
Calgary Depression 1 O ‘ | N\ o B
Simpson-Agnes EPS 4 O - Ax] ofN:
% Change in Weight 4 O @ VAN
Quality of Life 4 - |0 AN oA
Drug Use Scale 4 O 0 AO
| I | I I I | | |
=] 0 1 -1 0 1-1 0 1 JW Jackson, Am J Epidemiol (2019), Diagnosing Covariate

Balance Across Levels of Right-Censoring Before and After
Application of Inverse-Probability-of-Censoring Weights

Standardized Mean Difference



Repeat same process for IPCW

1D [ Time L, |L, LA |A Y, |G, |IPTW |IPCW [C art_
1 0 o 0 O O O 0 15 1.1

1 1 0 0 0 0 0 0 2.2 1.3
1 2 0 1 0 1 0 0 3.8 1.4 59
_ Pr[Cklck—l = Ol k-1 = OlAk—ll Lo, Lk]
1 59 0 1 0 1 0 0 10.2 1.8 -
1 1 1 1 1. 1.2 ) ) ..
=] g . Fit the following pooled logistic model:
2 1 1 1 1 1 0 0 1.5 1.5 _ _ _ _ _ _
logit[pr(C, = 1|Cx—1 = 0,Yx—1 = 0,A_1 = a,Lg,Ly)] =
2 2 1 1 1 1 0 0 26 18 age + alLy+ all, + azdy_q
2 34 1 1 1 1 1 0 54 2.0
3 0 0 0 0 0 0 0 1.2 1.3
3 1 0 0 0 0 0 0 2.0 2.7
3 2 0 0 0 0 0 1 NA NA
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3. Fitting outcome
models




Artificial censoring

1D [ Time L, |L, LA |A Y, |G, |IPTW |IPCW [C art_
1 0 o 0 O O O 0 15 1.1 0

Determine artificial censoring
based on assigned strategy:

1 1 o 0o O O O o0 22 1.3 0
1 2 O 1 0 1 0 0 338 1.4 1 “Start treatment and always use”
vs. “Never start treatment”
1 59 o 1 o0 1 0 o0 102 1.8 1
2 0 1 1 1 1 0 0 13 1.2 0
2 1 1 1 1 1 0 0 15 1.5 0
2 2 1 1 1 1 0 0 26 1.8 0
2 34 1 1 1 1 1 0 54 2.0 0
3 0 o 0 O O O o0 12 1.3 0
3 1 O 0O O O O o0 20 2.7 0
3 2 O 0O O O O 1 NA NA 0




Fit the outcome model

1D [ Time L, |L, LA |A Y, |G, |IPTW |IPCW [C art_
1 0 o 0 O O O 0 15 1.1 0

Fit the following weighted pooled logistic

model:

1 1 O O O O o0 o 2.2 1.3 0 logit[pr (Y = 1|Cx—q = 0,Cy_q(art) = 0,Y,_; = 0,4p)] =
Aot + a14

1 2 o 1 0 1 0 0 38 1.4 1

Then, the marginal In(HR) for treatment is
1 59 O 1 0 1 O 0 102 18 1 given by o (under the assumption that outcome
2 0 1 1 1 1 0 0 13 12 0 incidence is <10% in each time interval)
2 1 1 1 1 1 0 o0 15 1.5 0
2 2 1 1 1 1 0 0 26 1.8 0 If baseline confounders were used in the

numerator of the stabilized weights, then
they have to be added to the outcome

2 3 1 1 1 1 1 0 54 20 0
3 0 0 0 0 0 0 0 12 13 0O model:

5 |4 0 0 0 0 0 0 20 27 O logitlpr(Ye = 1|Co_y = 0, Cos(@rt) = 0, oy = 0, Ag, Lo)] =
3 2 0 0 0 0 0 1 NA NA O @or + ardo + @zl




R code

logit[pr(Yy, = 1|Cx—1 = 0,Cr_1(art) = 0,Y,_; = 0,4,)] = ay + @14,

# fit outcome model

outcome_mod <- gIm(Y_k ~ Time + [(Time”2) + A 0+ L_O,
family = binomial(), weight = IPTW*IPCW,

data = subset(dat, C_k==0 & C_k_art ==0))

# obtain hazard ratio

exp(coef(outcome_mod))




Assessing effect modification by baseline variable /

logit[pr(Vy, = 1|Cx—1 = 0,Cr_1(art) = 0,Y,_; = 0,40, V)] = ag; + a1 4o + ayV + azA,V

# fit outcome model

outcome_mod <- gIm(Y_k ~ Time + [(Time”2) + A 0+V + A _0:V,
family = binomial(), weight = IPTW*IPCW,

data = subset(dat, C_k==0 & C_k_art ==0))




95% confidence intervals /

Need to account for use of IPTW/IPCW (and perhaps repeated use of same individual
through sequential trials or cloning)

Solutions:

1. Robust standard error (e.g. survey package in R)
outcome_mod <- svygim(Y_k ~ Time + I(Time”2) + A_ 0+ L_O,

family = binomial(), design = svydesign(id = ~id, weights = “IPTW*IPCW,
data = subset(dat, C_k==0 & C_k_art ==0))
exp(confint(outcome_mod))

2. Nonparametric bootstrap



L Leiden University
C Medical Center

Questions

e.l.fu@lumc.nl




Additional topics

Dose-response models

Constructing inverse probability weighted survival curves

Competing risks

Implementing clone-censor-weight

Implementing sequential trials
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4. Dose-response
models




Fitting a dose-response model instead of censoring

1D [ Time L, |L, LA |A Y, |G, |IPTW |IPCW [C art_
1 0 o 0 O O O 0 15 1.1 0
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Fitting a dose-response model instead of censoring
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Censoring vs. dose-response model

Artificial censoring approach Dose-response approach
Fit the following weighted pooled logistic Fit the following weighted pooled logistic
model: model:
logitlpr(Y, = 1|Cx_1; = 0,Cp_1(art) =0,Y,_, = 0,4,)] = logitlpr(Y, = 1|Ct_1 =0,Y,_; = 0,4,)] =
Aot + @14¢ Yot + V1htot + V2 (Ator)*
HR for always treat vs. never treat: HR for each additional month of treatment:
e“1 eV14tot+V2(Ator)?
HR for always treat vs. never treat:
ey1*60+y2*602




Different dose-response models

Total duration of treatment

L
logitpr (Y = 1|1Cr_q1 = 0,Y—1=0,4,)] = vor + 11 Z Ax + v (Z
k=0

Average duration of treatment

loglt[pr(yk = 1|Ek—1 = 6, Yk—l = G,Ak)] — 50t + 51(

k=0




Sometimes dose-response model not needed

Hazard at each timepoint k depends on
cumulative treatment history

o

LAY LAY, LAY,

X2

logit[pr(Yy = 1|Cx—1 = 0,Y,_1=0,4,)] =
2

vy

Hazard at each timepoint k only depends on
most recent treatment

LAY LAY r L= Ay Y

X2

logit[pr(Yy = 11Cx—q1 = 0,Y4_1 = 0,4,)] =
Bot + B1Ak




Useful references /

Danaei G, Rodriguez LA, Cantero OF, Logan R, Hernan MA. Observational data for
comparative effectiveness research: an emulation of randomised trials of statins and

primary prevention of coronary heart disease. Stat Methods Med Res. 2013
Feb;22(1):70-96. doi: 10.1177/0962280211403603. Epub 2011 Oct 19. PMID:
22016461; PMCID: PMC3613145.

Toh S, Hernan MA. Causal inference from longitudinal studies with baseline
randomization. Int J Biostat. 2008 Oct 19;4(1):Article 22. doi: 10.2202/1557-
4679.1117. PMID: 20231914; PMCID: PMC2835458.
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5. Parametric estimation
of weighted survival
curves




Making survival curves

1D [ Time L, [L, LA A Y
1 O O 0 O O O

1 1 0 0 0 0 0 Survival from IP weighted hazards model

1 2 O 1 0 1 O

1 59 o 1 0 1 o0

2 0 1 1 1 1 0 I

2 1 T T TR TR N} ’

2 2 1 1 1 1 0

2 34 1 1 1 1 1 S S S S S S S et
3 0 O 0 0 0 O onte

5 | 0 0 0 0 0 S

3 2 O 0 0 0 O




How is survival calculated? /

Survival

1D [ Time L, [L, LA A Y
1 O O 0 O O O

k
1 1 0 0 0 0 0 Pr[Y, = 0] = 1_[ Pr[Y,, = 0|V, _, = 0]
ER G m=1

Pr[Y, = 0] = Pr|Y, = 0|Y; = 0] = Pr[Y; = 0]

o N A O O e i = 0.95 % 0.90 = 0.855
2 0 1 1 1 1 0
2 1 1 1 1 1 0
2 2 1 1 1 1 0 Hazard
Pr[Yk = 1|Yk—1 == 0]
2 34 LI O L O Pr[Y, = 1|V, = 0] = no.of deaths during interval 2
3 0 o 0 0 0 0 rif = 1% = 0] = no.of people alive during interval 2
3 1 O O O O O = (0.05
3 2 0O 0 0 0 O Pr(Y¥, =0|Y; =0] =1—-Pr[Y, =1|Y; =0] =1 —-0.05=0.95




Calculating survival from hazards

1D [ Time L, |L, | A |A Y, |G IPTW |IPCW [C art_
1 0 O 0 O O O 0 15 1.1 0

Survival from hazard

k

1 1 0O 0 0 0 0 0 22 13 O prlY, = 0] = l—[ PE[Y.. = 0¥ s = O]

1 2 o 1 0 1 0 0 38 14 1 11
k

1 59 0 1 0 1 0 0 102 18 1 = l_[(l — Pr|Yy, = 1|Y;-1 = 0])
=1

2 0 1 1 1 1 0 0 13 12 0 m

2 1 1 1 1 1 0 0 15 15 0O

> 2 1 1 1 1 0 0 26 18 o Estimating hazards from a weighted

logistic model

2 34 1 1 1 1 1 0 54 2.0 0 logit[pT(Yk+1 — 1|Yk — 0’ Ck — 0’ Ck_art — O,Ao)] —
3 0 o 0 0 0O O O 12 13 © Ao + a1 g + ayAg * k +azAg * k?
3 1 O 0 0 0 O O 20 27 O
where ap ), = g + @y * k + ag * k?
3 2 0O 0 0 0 O 1 NA NA O '




Use model to predict hazards at each timepoint

Time | Time? | A, |hk ISk [ kcum
0 0 1

1 1 1

2 4 1 logit[pT(Yk+1 = 1|Yk =0, =0,Ck grt = 0,40 = 1)] =
Ao +ay + ay xk +az * k?

Dataset 1: Prediction under always treatment

59 3481 1

Time | Time? | A, [hk Sk Sk cum
0 0 0

1 1 0
2 4 0 logit|[pr(Yiesr = 1|V = 0,C = 0,Ci gre = 0,49 = 1)] =
X0,k

Dataset 2: Prediction under never treatment

59 3481 O




R code (1/2)

# fit of weighted hazards model

outcome_mod <- gim(Y_k==1 ~ Time + Timesqg + A_ 0 + I(A_0*Time) + I(A_0*Timesq),
family = binomial(), weight = IPTW*IPCW,

data = subset(dat, C_k==0 & C_k_art ==0))

# creation of “treated” and “untreated” empty datasets
dat_notreat <- data.frame(cbind(0, seq(0, 59), (seq(0, 59))"2))
dat_treat <- data.frame(cbind(1, seq(0, 59), (seq(0, 59))"2))

colnames(dat_notreat) <- c(“A_0", “Time", “Timesq")

Time | Time? | A, |hk ISk |k cum
0 0 1

1 1 1
2 4 1

colnames(dat_treat) <- c(“A_0", “Time", “Timesq")

59 3481 1




R code (2/2)

# Calculating hazard in each person-month
dat_notreatSh_k <- predict(outcome_mod, dat_notreat, type="response")
dat_treatSh_k <- predict(outcome_mod, dat_treat, type="response")

# Calculating survival in each person-month
dat_notreatSS_k <- 1-dat_notreatSh_k mmmm
dat_treatSS_k <- 1- dat_treatSh_k 0 0 1
1 1 1
# Calculating cumulative survival 2 4 1
dat_notreatSS _k _cum <- cumprod(dat_notreatS S_k) .
dat_treatSS_k_cum <- cumprod(dat_treatSS_k) 59 3481 1




Useful references /

 Hernan MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman &

Hall/CRC. Chapter 17 Causal survival analysis
e https://remlapmot.github.io/cibookex-r/causal-survival-analysis.html| (R code)

* Cole SR, Hernan MA. Adjusted survival curves with inverse probability weights.
Comput Methods Programs Biomed. 2004 Jul;75(1):45-9. doi:
10.1016/j.cmpb.2003.10.004. PMID: 15158046.



https://remlapmot.github.io/cibookex-r/causal-survival-analysis.html
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6. Competing risks




What is a competing event? /

* A competing (risk) event is any event that makes it impossible for the event of interest
to occur

 E.g., if interested in the effect of SGLT-2 inhibitors vs. placebo on dialysis, then death
IS a competing event

* Similarly applies to randomized trials and observational studies



How to handle competing events?

/_\ A = treatment of interest

A—D=—Y D = competing event
Y = outcome of interest

1. Total effect of treatment 2. Controlled direct effect of treatment
A— D—Y A—{D—Y

“What is the total effect of treatment on the “What is the direct effect of treatment on the

outcome, part of which may be mediated by outcome, in a world where we eliminate the
the competing event?” competing event?”



Total effect

1. Total effect of treatment
Pr[Y%=! = 1] vs.Pr[Y 470 = 1]

N

A—D—Y

“What is the total effect of treatment on the
outcome, part of which may be mediated by
the competing event?”

vy

Can be easily identified in a perfect

randomized trial

However, does not answer question
about mechanism: if we find

Pr[Y?=1 = 1] < Pr[Y%=° = 1], is this due
to treatment A lowering Y, due to A
increasing D (thereby preventing A), or
a combination of both?




Most extreme example /

 We conduct a RCT testing a new pill vs. placebo on the 5-year risk of dialysis
 Assume that the trial is perfect (infinite sample size, perfect adherence, no loss to follow-
up etc)
* After completing the trial, we find Pr[Y = 1|A =1] = 0andPr[Y = 1]A =0] = 0.4
 We conclude that the new pill is very effective in preventing dialysis

* However, the pill is poisonous and kills those that ingest it within 1 minute

e Are we still interested in the total effect?



Less extreme example /

. _?\

Smoking —— Death — Dementia




How to estimate the total effect

Dataset to fit the outcome model Dataset to fit the weight model

1D | Time L, LA ALY, |IPTW D[ D Time |L, L A A Y, |IPTW D, _
0 0 0 0 0 0 1.5 0 0 0 0 0 0 0 1.5 0

1 1

1 1 0 0 0 0 0 2.2 0 1 1 0 0 0 0 0 2.2 0
1 2 0 1 0 0 0 3.8 0 1 2 0 1 0 0 0 3.8 0
1 3 0 1 0 0 0 4.2 1 1 3 0 1 0 0 0 4.2 1
1 4 0 NA O NA O 4.2 1

1 5 0 NA O NA O 4.2 1

1 59 0 NA O 1 0 4.2 1




Controlled direct effect /

2. Controlled direct effect of treatment o Helps to elucidate mechanisms
Pr|y®=14=0 = 1] ps, Pr|y*=04=0 = 1]

N

A— D—Y

 However, also difficult to interpret: “a world
where we eliminate the competing event” -

How are we going to eliminate this in the real

“What is the direct effect of treatment on the : : c :
outcome. in o world where we eliminate the world? What is this potential intervention?

competing event?”

* Additional assumptions are required to
identify Y®4=0. yad=0 L 4 gnd yad=0_L p



Controlled direct effect /

 Competing event is considered a censoring event: value of Y¢=14=0 js unknown after
competing event occurs

 “Acensoring event is any event occurring in the study that ensures the values of all
future counterfactual outcomes under treatment level a that are of interest are
unknown/missing, even for an individual who actually received treatment level a.”

* Thus, if you censor for competing events you are implicitly targeting the CDE

 We try to simulate what would have happened, had the competing event not occurred

* Intuitively, we upweight people without the competing event who have similar
characteristics as those with the competing event



Assumptions for censoring /

* Unbiased estimation requires absence of backdoor paths between A and Y, and no
backdoor paths between D, and Y, (data shown below are from a randomized
controlled trial)

* Use IPCW to remove arrow between L, and D,

/ /




Violation of assumptions /

If there are unmeasured common causes of D5 and
A—> D, ——Y

v\ /v Y,, then we cannot validly estimate the controlled
U

2 direct effect




How to estimate the controlled direct effect

Dataset format

1D [ Time |1, LA | A Y, [IPTW [D_|IPCW_
1 0 0O O 0 15 0 1.1

0O O
1 1 o 0 O O 0 22 0 1.3
1 2 o 1 0 O o0 338 0 1.8
1 3 O 1 0 0 0 42 1 2.1

Step 1: Fit weight model for censoring due to competing event
59
1

A o S S
t=0 Pr[Dlek—l — 0) Yk—l — O,Ak_l, Lo, Lk]

Step 2: Use this model to calculate IPCW

Step 3: Fit outcome model adding these additional IPCW (on top of IPTW and IPCW for loss-to-follow-up)



Useful references

Introductory:

* Rojas-Saunero LP, Young JG, Didelez V, lkram MA, Swanson SA. Considering Questions Before Methods
in Dementia Research With Competing Events and Causal Goals. Am J Epidemiol. 2023 Aug
4;192(8):1415-1423. doi: 10.1093/aje/kwad090. PMID: 37139580; PMCID: PMC10403306.

* Mansournia MA, Nazemipour M, Etminan M. A practical guide to handling competing events in
etiologic time-to-event studies. Glob Epidemiol. 2022 Jul 11;4:100080. doi:
10.1016/j.gloepi.2022.100080. PMID: 37637022; PMCID: PMC10446108.

Technical:

* Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernan MA. A causal framework for classical statistical
estimands in failure-time settings with competing events. Stat Med. 2020 Apr 15;39(8):1199-1236. doi:
10.1002/sim.8471. Epub 2020 Jan 27. PMID: 31985089; PMCID: PMC7811594.



Separable effects

 Decompose medication into two separable components (N and O): one only affecting competing event death,
the other component affecting only the outcome of interest
* E.g. with the poisonous pill, one component (ACE) directly reduces risk of dialysis, whereas the other component (K+)
leads to cardiac arrest and death
* The effect of this new medication is our separable direct effect: E[Y"=00=1]-E[Y"=0,0=0]
* Using data from a trial of the original medication to try to emulate the trial of a hypothetical yet-to-xist
treatment

Ya=1 - Yn=1,o=1
N D Y Ya=0 — Yn=0 0=0

\ / Yn=0.0=1 can be identified by the mediation formula
and is equivalent to Ya=1 Ma=0
» Define separable direct effects/indirect effects in potential outcomes notation
* We can use information on A, D and Y to identify the separable effects of N and O
* Assumptions: (i) no unmeasured common causes of mediator D and outcome Y and (ii) no direct effects of component O
on mediator D and of component N on outcome Y

 Thisis an interventionist way of thinking



G-formula for identification of Y"=0.0=1

s N——D—Y

N

* In our randomized trial, where we randomize to A=1 and A=0, we can readily identify Y"=1.°=! (because
Yn=bo=1=Ya=1) and we can also readily identify Y"=0.°=0 (because Y"=0.0=0 = Ya=0)

* However, nobody in our population has Y"™=9°=1 but we need this quantity since we are interested in
the causal effect Yn=0.0=1.ya=0

« Ifdata on N and O were available, then we could identify E[Y"=%°=1] with

E[yn=00=1] = 2 E[Y|0 =1,M = m]Pr[M = m,N = 0]
m

* However, we don’t have data about N and O. Nevertheless, O=1iff A=1,and N=0 iff A=0, so we can
replace M and N by A! There is a deterministic relationship between A and N/O

E[Y"=00=1] = z E[Y|[A=1,M = m]Pr[M =m,A = 0]
m
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7. Clone-censor-weight
implementation




Clone-censor-weight algorithm

o line L n n L o

NA O
1 1 O O NA O O
1 2 O 1 NA 1 O
Step 0. Fit the following pooled logistic model on the
1 59 0 1 NA 1 O dataset before cloning and censoring:
2 0 1 1 NA 1 O logitlpr(4; = 1|C, = 0,Y,_; = 0,44_1,= a,Ly)]
2 1 1 1 NA 1 O = agr + alLy + all,
2 2 1 1 NA 1 O
(We already know how to do this)
2 34 1 1 NA 1 1
3 0 O O NA O O
3 1 O O NA O O
3 2 O O NA O O




Clone-censor-weight algorithm

10 Time [L, L LA ALY [IPTW [ G, art ]
i [ 0o o0 o 0 o0

1 1 0 0 o0 0 O

1 2 0 1 0 1 0
TR
2 0 1 1 0 1 0
[0 rime |1y |1u A LA [ Y6 [1PTw Jc, ant | I P A
1 0 0 0 NA O 0
11 00 NAO O e e Step 1. Duplicate the dataset, and assign each
1 5 0 1 NA 1 0 2 34 1 1 0 1 1
3 0 0 0 0 0 0 . « . o . .
e e individual to each of the strategies he is compatible
1 59 0 1 NA 1 0
3 2 0 0 0 0 0 . N
2.0 1 1 NA1 O with (cloning)
2 1 1 NA 1 0
2 2 1 1 NA 1 0
[0 rime |1y |1u A LA [ Y6 [1PTw lc, ant |
2 34 1 1 NA 1 1 1 0 0 0 1 0 0
3 0 0 0 NA O 0 1 ; g S 1 S g
3 1 0 0 NA O 0 !
B
1 59 0 1 1 1 0
2 0 1 1 1 1 0
2 1 1 1 1 1 0
2 2 1 1 1 1 0
2 34 1 1 1 1 1
3 0 0 0 1 0 0
3 1 0 0 1 0 0
3 2 0 0 1 0 0




Clone-censor-weight algorithm

1D | Time [ Lo [Lc [ A A [ Yi [IPTW | C art
1 0 O 0 0 0 O 0

1 1 O O O O O 0

1 2 0 1 O 1 0 1
Step 2. Artificially censor if and when the individual no
—

9 O ] [ [ :
1/5 —71 O 1 0 . longer follows his assigned strategy. Next, remove the

2 0 1 1 0 1 0 0 rows that are artificially censored

2 1 1 1 O 1 O 0

2 2 1 1 0 1 0 0 (here, illustrated on one of the cloned datasets)

o O O
o O O]0
o O O
o O O
© O O|]Oo

2 1
3 0
3 1 0
3 0




Clone-censor-weight algorithm

1D [ Time L, | L | A | A |V, [IPTW |G art_
1 0 O 0 O O O 15 0

1 1 O 0 O O 0 2.2 0

1 2 O 1 O 1 0 338 1
P ~ N Step 3. Calculate the IPTW (we could also call them
ﬁ S ‘1)OT 0 1 . IPCW) using the model we previously fit on the

2 0 1 1 O 1 0 13 0 remaining rows

2 1 1 1 O 1 0 15 0

2 2 1 1 O 1 0 26 0

2 34 1 1 O 1 1 54 0

3 0 O O O O 0 1.2 0

3 1 O O O O O 20 0

3 2 O O O O O NA 0




Clone-censor-weight algorithm

1D [ Time L, | L | A | A |V, [IPTW |G art_
1 0 O 0 O O 0 15 0

1 1 O 0 0 0 0 22 O
|2 o 1 0 1 0 38 1
1_59 —# ——0 1 0 1
2 0 1 1. 0 1 0 13 O
2 1 1 1. 0 1 0 15 O
2 2 1 1 0 1 0 26 O
2 3 1 1 0 1 1 54 0
3 0 O 0 0 0 0 12 O
3 1 0O 0 0 0 0 20 O
3 2 0O 0 0 0O 0 NA O

Step 4. Fit the weighted outcome model using pooled

logistic regression:

logit[pr(Yy, = 1|Cx_; = 0,Cr_1(art) = 0,Y,_, = 0,4,)]
= Upt + a1A0




Alternative implementation

Implementation 1: Implementation 2:

Step O: Fit weight model on Step 1: Clone/duplicate dataset
dataset before cloning/censoring and assign to strategies

Step 1: Clone/duplicate dataset Step 2: Artificially censor

and assign to strategies
Step 3a: Estimate weight models
Step 2: Artificially censor (separately for each cloned
dataset)
Step 3: Calculate weights
Step 3b: Calculate weights
Step 4: Fit outcome model
Step 4: Fit outcome model

Both approaches are equivalent non-parametrically



Difference between implementations

N
‘ ‘29.160 ‘ Ll Al Yl L2 AE }}‘—2 N
3240
4860
3240 L: Confounder
1125 .
s A:  Treatment . os o 02 29.160
. 3 T
- Y: OQutcome B 3240
5000 Qﬁ@a ' ,h: o 05 o 05 1125
o > 2 1125
14.400 0.1
Ja00 e L
2400
1600 ofs us 0.2 s 0B 2400
5000 S -
5000 J o -1" o T 1600
o 5w =N o5 o oz — 2000
10.000 ) 05 ':2 ' 0000 8000
1 0.0:00 1 ,J_"_k e e B B e e Bt e (100
s Fit del on the entire t # | Fi
wsl FIL ONE MOdE] on the entire tree < | Fit two models on red/green branches
1050 200.000 : 1“, o0 784
1050 ":.. =.=- 1 . 05 o 05 1050
1680 @ * ™ 10 g 1050
02 o, P 4 °
6000 1 - T . . [ )
10.368 .;.'.\ 02 o 08 1728
1152 2 —
1728 Y 5 1152
2 oo TN N s . 0 3360
8400 0 * ! 800 .8 13.440
3360 0.4
a0 e nmee e mmm s e e nnas 32,000

32.000
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8. Sequential trial
implementation




Target trial specification

_ Specified target trial

Eligibility criteria 55-84 years

No history of coronary heart disease, stroke, peripheral vascular disease,
heart failure, schizophrenia, dementia

2 years of continuous recording in database

January 2000-November 2006

No previous use of statins

Treatment 1. Start statins and always use

strategies . Never start statins




Emulating this trial

_ Specified target trial

AT AR ISF @  55-84 years

e No history of coronary heart disease, stroke, peripheral vascular disease,
heart failure, schizophrenia, dementia

e 2 vyears of continuous recording in database

e January 2000-November 2006
No previous use of statins

([
Treatment 1. Start statins and always use
strategies 2. Never start statins

e First trial starts January 2000: check eligibility and do treatment assignment

e Second trial starts February 2000: check eligibility and do treatment assignment
Etc. etc. for a total of 83 trials

People can be eligible for multiple trials and hence have multiple time zeros

64




Sequential trial design

A
[ |
Jan Feb Mar Apr Jun Jul Aug
e
ﬂ * * *
f 1 T Qo/d i @ : @ X X ] Yy —i
t1 t t3 ts ts ts t;

T Replicate 2

ﬂ Replicate 1
To
X
L

ﬂ Replicate 3 g I Y —




Data format (longitudinal history) — weight models

Table A2. Data for three hypothetical individuals

Individual Trial Eligible Initiator Current user Baseline LDL(mmol/L) LDL(mmol/L) Month CHD Month dead

I 12 | 0 0 247 247 0 |4
I 13 I 0 0 247 247 0 14
2 24 | 0 0 277 2.77 26 26
2 25 | I I 277 2.77 26 26
2 26 0 0 I 277 2.84 26 26
3 43 | I I 2.88 2.88 0 0
3 44 0 0 I 2.88 2.88 0 0
3 45 0 0 0 2.88 2.77 0 0
3 : : : : 2.88 : 0 0
3 67 O 0 0 2.88 2.71 0 0
3 68 | 0 0 2.88 2.71 0 0
3 69 | I I 2.88 2.73 0 0
3 70 0 0 I 2.88 2.73 0 0
m+t

viv= || 1
m+t PT[ARIER = 6, Yk—l = G,A‘Ik_p Lo; Zk]

k=m

Fit the following logistic model: logit[pr(4, = 1|C, = 0,Y,,_1 = 0,Ax_1,= a, Lo, Li)] = agr + alLly + all,



Expand dataset and create replicates

Table A3. The expanded dataset for the three hypothetical individuals in Table A2

Follow-up  Eligible Initiator = Current user  Baseline Time-varying  Event

Individual ~ Trial (m)  month (t)  (E,) (Av) (Ao LDL (L)  LDL (Ly+r) (Dim+e)
Table A2. Data for three hypothetical individuals

I 12 0 | 0 0 2.47 2.47 0
Individual Trial Eligible Initiator Current user Baseline LDL(mmol/L) LDL(mmol/L) Month CHD Month dead | 12 | | 0 0 2.47 2.47 0
: 2 | 0 0 247 > 47 0 14 I 13 0 | 0 0 2.47 2.47 0

' ’ 2 24 0 | 0 0 2.77 2.77 0

| 13 1 0 0 247 2.47 0 14 5 24 | | 0 | 277 277 0
2 24 | 0 0 277 2.77 26 26 ’ ’
2 25| | | 277 277 26 26 2 24 2 ' 0 ! 2.77 2.84 '
2 26 0 0 | 277 2.84 26 26 2 25 0 ' ' ! 277 2.77 0
3 43 | | | 2.88 2.88 0 0 2 25 ' ' ' ' 2.77 2.84 '
3 4 0 0 | 2.88 2.88 0 0 . 3 43 0 I l I 2.88 2.88 0
3 45 0 0 0 2.88 2.77 0 0 3 43 I I I I 2.88 2.88 0
3 : : : : 2.88 : 0 0 3 43 2 | I 0 2.88 2.77 0
3 67 0 0 0 2.88 2.71 0 0 3 43 : : : : : : :
3 68 | 0 0 2.88 271 0 0 3 43 26 | I I 2.88 2.73 0
3 69 | l l 2.88 2.73 0 0 3 43 27 I | | 2.88 2.73 )
3 70 0 0 | 2.88 2.73 0 0 3 68 0 | 0 0 271 271 0

3 68 I | 0 I 2.71 2.73 0

3 68 2 | 0 | 2.71 2.73 .

3 69 0 | I I 2.73 2.73 0

3 69 I | I I 2.73 2.73




Artificially censor & Calculate weights on expanded dataset

Table A3. The expanded dataset for the three hypothetical individuals in Table A2

Follow-up  Eligible  Initiator ~ Current user  Baseline Time-varying  Event

Individual ~ Trial (m) month (t)  (E.) (An) (Amse) LDL (L,)  LDL (Lpmsy) (Om) | C_k_art | IPTW
| 12 0 | 0 0 2.47 2.47 0
| 12 | | 0 0 2.47 2.47 0
| 13 0 | 0 0 2.47 2.47 0
2 24 0 | 0 0 2.77 2.77 0
2 24 | | Lo 1] 2.77 2.77 0
2 24 2 | 0 | 2.77 2.84 |
2 25 0 | | | 2.77 2.77 0
2 25 | | | | 2.77 2.84 |
3 43 0 | | | 2.88 2.88 0
3 43 | | | | 2.88 2.88 0
3 43 2 | I 0] 2.88 2.77 0
3 43 : : : : : : :
3 43 26 | | | 2.88 2.73 0
3 43 27 | | | 2.88 2.73 .
3 68 0 | 0 0 2.71 2.71 0
3 68 | | 0 | 2.71 2.73 0
3 68 2 | 0 | 2.71 2.73 .
3 69 0 | | | 2.73 2.73 0
3 69 | | | | 2.73 2.73




Fit weighted outcome model

logit[pr (Vmst+1 = 1Cmarsr(art) = 0,V = 0,Ap)] = aomer + 14,
where Qg mir = Qg + Ay x M+ az * m?* + ay * t + ag * t?

Table A3. The expanded dataset for the three hypothetical individuals in Table A2

Follow-up  Eligible Initiator =~ Current user  Baseline Time-varying  Event

Individual ~ Trial (m)  month (t)  (E.) (Am) (Am+r) LDL (L) LDL (L) (Dt
I 12 0 | 0 0 247 2.47 0
I 12 | | 0 0 2.47 2.47 0
I 13 0 | 0 0 2.47 247 0
2 24 0 | 0 0 277 2.77 0
2 24 I | 0 I 2.77 2.77 0
2 24 2 | 0 I 277 2.84 [
2 25 0 I I I 277 2.77 0
2 25 | I I I 277 2.84 [
3 43 0 | I I 2.88 2.88 0
3 43 | | I I 2.88 2.88 0
3 43 2 | I 0 2.88 2.77 0
3 43 : : : : : : :
3 43 26 | I I 2.88 2.73 0
3 43 27 I I I 2.88 273 .
3 68 0 I 0 0 271 271 0
3 68 [ | 0 I 271 273 0
3 68 2 | 0 | 2.71 2.73 .
3 69 0 I I I 273 2.73 0
3 69 I | I I 273 2.73
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