

Doc, what is my kidney function? Cystatin C in daily practice

Edouard Fu, PhD FERA

Assistant professor

Department of Clinical Epidemiology LUMC, The Netherlands

GFR: key parameter in diagnosis, staging, prognosis and management of CKD

Persistent albuminuria categories

				De	escription and ran	ge
				A1	A2	A3
KDIGO: Prognosis of CKD by GFR and albuminuria categories				Normal to mildly increased	Moderately increased	Severely increased
			<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol	
n²)	G1	Normal or high	≥90			
/ 1.73 m nge	G2	Mildly decreased	60–89			
(ml/mir and ra	G3a	Mildly to moderately decreased	45–59			
gories cription	G3b	Moderately to severely decreased	30–44			
i R cate (Desc	G4	Severely decreased	15–29			
GF	G5	Kidney failure	<15			

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red: very high risk. GFR, glomerular filtration rate.

Medication eligibility, drug dosing

Kidney Transplant referral

Dialysis access placement

Nephrologist referral

Plasma clearance (iohexol)

Urinary clearance (iothalamate)

Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021 Inker, Lesley A. AJKD 78(5)

Using plasma concentration of endogenous substances

Non-GFR determinants

Non-GFR determinants

Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021 Inker, Lesley A. AJKD 78(5)

	Cockcroft-Gault 1973
Study Design	Two measurements of 24h creatinine excretion per kg, n=236
Population	18-92 yrs All white men
Equations	CrCl = (140– age) x weight/72 x S _{Cr}
ဂိုုိ႔ို Race/Sex	Multiply by 0.85 if female No race variable
Limitations	Uses weight, needs adjustment for BSA and BMI >30

	Cockcroft-Gault 1973	MDRD 1999
Study Design	Two measurements of 24h creatinine excretion per kg, n=236	Cross sectional study, n=1628, estimation of GFR using serum Cr
Population	18-92 yrs All white men	Non-diabetic CKD population 18-70 yrs,~80% White
Equations	CrCl = (140– age) x weight/72 x S _{Cr}	eGFR = 186.3 x (S _{Cr}) ^{-1.154} x (Age) ^{-0.203}
ဂိုုဂို Race/Sex	Multiply by 0.85 if female No race variable	Multiply by 0.742 if female Multiply by 1.21 if Black
Limitations	Uses weight, needs adjustment for BSA and BMI >30	Underestimates measured GFR at higher level

	Cockcroft-Gault	MDRD	CKD-EPI
	1973	1999	2009
Study Design	Two measurements of 24h	Cross sectional study,	Cross sectional validation
	creatinine excretion per kg,	n=1628, estimation of GFR	analysis, n=3896, estimation
	n=236	using serum Cr	of GFR using Cr
Population	18-92 yrs All white men	Non-diabetic CKD population 18-70 yrs,~80% White	31.5% Black, median age 47, mGFR 67.6
Equations	CrCl = (140– age) x	eGFR = 186.3 x (S _{Cr}) ^{-1.154} x	eGFR = 141 x min(S _{Cr} /κ, 1) ^α x
	weight/72 x S _{Cr}	(Age) ^{-0.203}	max(S _{Cr} /κ, 1) ^{-1.209} x 0.9929 ^{Age}
ဂိုုဂို Race/Sex	Multiply by 0.85 if female	Multiply by 0.742 if female	Multiply by 1.018 if female
	No race variable	Multiply by 1.21 if Black	Multiply by 1.159 if Black
Limitations	Uses weight, needs adjustment for BSA and BMI >30	Underestimates measured GFR at higher level	Limited no. of elderly, racial and ethnic minorities

An older Andrew Levy, US

Use of race in calculation of eGFRcr!

		Cockcroft-Gault 1973	MDRD 1999	CKD-EPI 2009	CKD-EPI 2021
Stud	y Design	Two measurements of 24h creatinine excretion per kg, n=236	Cross sectional study, n=1628, estimation of GFR using serum Cr	Cross sectional validation analysis, n=3896, estimation of GFR using Cr	Cross sectional validation analysis, n=4050, estimation of GFR using Cr
ووو ک	pulation	18-92 yrs All white men	Non-diabetic CKD population 18-70 yrs,~80% White	31.5% Black, median age 47, mGFR 67.6	14.3% black, 10 years older, 9 points higher mGFR than 2009 dataset
E	quations	CrCl = (140– age) x weight/72 x S _{Cr}	eGFR = 186.3 x (S _{Cr}) ^{-1.154} x (Age) ^{-0.203}	eGFR = 141 x min(S _{Cr} /κ, 1) ^α x max(S _{Cr} /κ, 1) ^{-1.209} x 0.9929 ^{Age}	eGFR = 142 x min $(S_{Cr}/\kappa, 1)^{\alpha}$ x max $(S_{Cr}/\kappa, 1)^{-1.200}$ x 0.9938 ^{Age}
ဂိုု် ရ	Race/Sex	Multiply by 0.85 if female No race variable	Multiply by 0.742 if female Multiply by 1.21 if Black	Multiply by 1.018 if female Multiply by 1.159 if Black	Multiply by 1.012 if female No race variable
Lin	nitations	Uses weight, needs adjustment for BSA and BMI >30	Underestimates measured GFR at higher level	Limited no. of elderly, racial and ethnic minorities	Limited no. of Black patients with low GFR; using both CysC and Cr was more accurate

A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease

Recommend immediate implementation of the <u>CKD-EPI creatinine</u> <u>equation refit</u> <u>without the race variable</u> in all laboratories in the U.S. The equation refit excludes race in the calculation and reporting, includes diversity in its development, is

immediately available to all labs in the U.S., and has acceptable performance characteristics and potential consequences that do not disproportionately affect any one group of individuals.

Encourage and fund research on GFR estimation with new endogenous filtration markers and on interventions to eliminate racial and ethnic disparities

The Task Force gathered input from diverse stakeholders and carefully reviewed the evidence to create these recommendations

Cynthia Delgado, Mukta Baweja, Deidra C. Crews, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. AJKD DOI: 10.1053/j.ajkd.2021.08.003, JASN DOI: 10.1681/ASN.2021070988

Visual Graphic by Edgar Lerma, MD, FASN

First paper in new research line

Nephrology Dialysis Transplantation (2023) 38: 119–128 https://doi.org/10.1093/ndt/gfac197 Advance Access publication date 11 June 2022

Removing race from the CKD-EPI equation and its impact on prognosis in a predominantly White European population

Edouard L. Fu^{1,2,3}, Josef Coresh⁴, Morgan E. Grams^{4,5}, Catherine M. Clase⁶, Carl-Gustaf Elinder⁷, Julie Paik², Chava L. Ramspek³, Lesley A. Inker⁸, Andrew S. Levey⁸, Friedo W. Dekker³ and Juan J. Carrero¹

- 1.6M adults undergoing routine serum creatinine measurements in Stockholm during 2007-2019
- We calculated changes in eGFR and reclassification across KDIGO GFR categories when changing from CKD-EPI 2009 to CKD-EPI 2021

Impact

Nephrol Dial Transplant (2023) 38: 1–6 https://doi.org/10.1093/ndt/gfac254 Advance Access publication date 7 September 2022

What should European nephrology do with the new CKD-EPI equation?

Ron T. Gansevoort ^[D], Hans-Joachim Anders², Mario Cozzolino³, Danilo Fliser⁴, Denis Fouque⁵, Alberto Ortiz^{6,7}, Maria José Soler⁸ and Christoph Wanner⁹

The 2021 CKD–EPI estimation equation without race covariate

Clin Chem Lab Med 2023; 61(1): 44-47

DE GRUYTER

EFLM Paper

Pierre Delanaye, Elke Schaeffner, Mario Cozzolino, Michel Langlois, Mario Plebani, Tomris Ozben and Etienne Cavalier*, on behalf of the Board members of the EFLM Task Group Chronic Kidney Diseases

The new, race-free, Chronic Kidney Disease Epidemiology Consortium (CKD-EPI) equation to estimate glomerular filtration rate: is it applicable in Europe? A position statement by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)

Figure 1: The development over time of the various GFR estimation equations, and their strengths and weaknesses.

Cystatin C and its eGFR equations

Acta Med Scand 1985; 218: 499-503

Serum Concentration of Cystatin C, Factor D and β_2 -Microglobulin as a Measure of Glomerular Filtration Rate

A. GRUBB, O. SIMONSEN, G. STURFELT, L. TRUEDSSON and H. THYSELL From the Department of Clinical Chemistry, Malmö General Hospital, Malmö, and Departments of Nephrology and Immunology, University Hospital, Lund, Sweden

- NOT AFFECTED by creatinine non-GFR determinants: diet, muscle mass
- <u>AFFECTED</u> by other non-GFR determinants, like inflammation, obesity or hyperthyroidism
- Less affected by "race", so cystatin C equations did not include race coefficient

KDIGO 2024

Data source

Review

The Stockholm CREAtinine Measurements (SCREAM) project; fostering improvements in chronic kidney disease care

The JIM Graphical Abstract is a concise visual summary of the main concept of the article. Please read the article for the full story.

Incorporation of Cystatin C Testing in Clinical Practice: Real World Experience in Sweden

Shoshana H. Ballew^{1,2}, Yingying Sang¹, Josef Coresh^{1,2}, Edouard L. Fu^{3,4}, Dorothea Nitsch⁵, Juan Jesus Carrero^{4,6,8} and Morgan E. Grams^{7,8}

KIREPORTS

KIReports.org

year	N*	Creatinine only	Creatinine and	% cystatin C
			cystatin C	tested
2010	529,996	510,679	19,317	3.64
2011	562,036	537,929	24,107	4.29
2012	518,709	493,470	25,239	4.87
2013	534,151	502,500	31,651	5.93
2014	552,909	515,809	37,100	6.71
2015	560,570	523,862	36,708	6.55
2016	568,561	533,323	35,238	6.20
2017	579,278	547,475	31,803	5.49
2018	536,958	510,267	26,691	4.97
Overall	1,369,183	1,216,514	152,669	11.15

*Total number of individuals with any creatinine measured within the year.

Who gets tested in Sweden?

Table 1. Characteristics of individuals tested for creatinine and/or cystatin C in 2014

Characteristics	Overall	Cystatin C and creatinine tested	Only creatinine tested
Ν	552909	37100	515809
eGFRcr (SD), ml/min per 1.73m ²	90 (22)	75 (27)	91 (21)
eGFRcys (SD), ml/min per 1.73m ²	69 (32)	69 (32)	
KDIGO G-stage by eGFRcr, %			
eGFR 90 $+$ ml/min per 1.73m ²	55	33	57
eGFR 60-89 ml/min per 1.73m ²	36	38	36
eGFR 45-59 ml/min per 1.73m ²	5.6	14	5.1
eGFR 30-44 ml/min per 1.73m ²	2.3	9.5	1.8
eGFR $<$ 30 ml/min per 1.73m ²	1.0	6.3	0.64
Any urine protein measured, %	26	47	24
ACR/PCR measured, %	13	34	11
Dipstick measured, %	13	13	13
ACR/PCR ^a (IQI), mg/g	14 (4–69)	16.8 (4.4–110.6)	8.0 (2.7–23.9)
Dipstick $+$ and above, %	6.1	8.2	5.9
Age (SD), yr	58 (19)	63 (18)	57 (19)
Female, %	55	46	55
Hypertension, %	47	68	45
Hypertension medication use, %	44	64	42
RAAS inhibitor use, %	30	45	28
Diuretics, %	19	34	18
Diabetes, %	13	23	13
Statin, %	19	29	18
History of coronary heart disease, %	6.7	12	6.3
History of cerebrovascular disease, $\%$	5.7	9.8	5.4
History of heart failure, %	5.5	13	5.0
History of peripheral artery disease, %	1.2	2.7	1.04
History of atrial fibrillation, %	8.0	15.8	7.4
Liver disease, %	2.4	3.7	2.3
Recent cancer, %	12	17	11
Chronic obstructive pulmonary disease, $\%$	4.1	6.8	3.9
Potassium >5 mmol/l, %	0.28	1.1	0.22
Anemia by hemoglobin, ^b %	4.3	9.1	4.0

 \downarrow eGFR_{cr} \uparrow UACR

↑ coronary heart disease, heart failure

 \uparrow cancer

 \uparrow medications

Nephrol Dial Transplant, 2024, **39**, 694–706

https://doi.org/10.1093/ndt/gfad219 Advance access publication date: 9 October 2023

Accuracy of GFR estimating equations based on creatinine, cystatin C or both in routine care

Edouard L. Fu (D^{1,2,3}, Andrew S. Levey⁴, Josef Coresh⁵, Morgan E. Grams⁶, Anne-Laure Faucon (D^{2,7}, Carl-Gustaf Elinder⁸, Friedo W. Dekker³, Pierre Delanaye^{9,10}, Lesley A. Inker⁴ and Juan-Jesus Carrero (D^{2,11}

6174 adults referred for single-point plasma clearance of iohexol, 9579 observations

Creatinine and cystatin C

SCREAM, Stockholm, Sweden Routine referrals 2011–2021

Comorbid conditions were common:

30% cardiovascular disease

28% liver disease

26% diabetes

26% cancer

Table 2: Bias, IQR, P₃₀ and correct classification of different GFR estimating equations compared with single-point plasma iohexol clearance.

	Bias, mL/min/ 1.73 m ² (95% CI)ª	IQR, mL/min/1.73 m ² (Q1, Q3) ^b	P ₃₀ , % (95% CI) ^c	Correct classification, % (95% CI) ^d
Creatinine-based equations				
CKD-EPI 2009	5.6 (5.3 to 6.0)	17.6 (–2.3 to 15.3)	74.1 (73.2 to 75.0)	56.4 (55.4 to 57.4)
CKD-EPI 2021	9.1 (8.8 to 9.5)	18.6 (0.6 to 19.2)	68.1 (67.2 to 69.1)	51.8 (50.9 to 52.8)
EKFC 2021	2.7 (2.5 to 3.0)	15.6 (-4.6 to 11.0)	79.5 (78.7 to 80.3)	58.9 (57.9 to 59.9)
RLM 2011	0.2 (-0.2 to 0.4)	15.6 (-7.7 to 7.9)	82.2 (81.4 to 82.9)	58.6 (57.6 to 59.5)
Cystatin C–based equations				
CKD-EPI 2012	−2.6 (−2.9 to −2.3)	15.0 (-10.4 to 4.6)	82.5 (81.7 to 83.3)	58.3 (57.4 to 59.3)
EKFC 2023	−1.1 (−1.4 to −0.9)	14.6 (-11.5 to 3.1)	84.5 (83.8 to 85.2)	60.8 (59.8 to 61.7)
CAPA 2014			83.2 (82.5 to 84.0)	58.1 (57.2 to 59.1)
Creatinine-cystatin C-based equation	Even with the	best equation		
CKD-EPI 2012	Only 2/3 corre	ct classification	89.1 (88.4 to 89.7)	66.7 (65.7 to 67.6)
CKD-EPI 2021			87.6 (86.9 to 88.2)	66.3 (65.3 to 67.2)
Mean of EKFC eGFRcr			88.5 (87.9 to 89.2)	66.8 (65.8 to 67.7)
and EKFC eGFRcys	10% of patier	nts have eGFR 🔰		
Mean of RLM and	outside 30	% of mGER	90.8 (90.2 to 91.4)	65.8 (64.8 to 66.7)
CAPA				

^aBias was expressed as the median difference in eGFR minus mGFR (95% CI). A negative bias indicates underestimation of the mGFR, and a positive bias indicates overestimation of the mGFR.

^bIQR is defined as the IQR and a measure of precision (the dispersion of individual errors around the bias). ^cP₃₀ was defined as the percentage of individuals with eGFRs within 30% of mGFR (95% CI). ^dCorrect classification of GFR categories was defined as agreement of eGFR and mGFR categories using the KDIGO GFR categories (<15, 15–29, 30–44, 45–59, 60–89) and $\geq 90 \text{ mL/min}/1.73 \text{ m}^2$).

Subgroup analyses

Conclusion

Best filtration marker award

GFR estimated with *both* creatinine and cystatine C

- eGFR_{cr-cys} was superior to eGFR_{cr} or eGFR_{cys} regardless of specific equation used, with small bias and high P₃₀
- all eGFR_{cys} and eGFR_{cr-cys} equations had more homogeneous performance than eGFR_{cr}

Best creatinine equation award

- Worse performance of CKD-EPI compared with EKFC and RLM may reflect differences in population characteristics and mGFR methods
- Implementing eGFR_{cr} equations will require trade-off between accuracy and uniformity across regions

CLINICAL EPIDEMIOLOGY

www.jasn.org

Accuracy of GFR Estimating Equations in Patients with Discordances between Creatinine and Cystatin C-Based Estimations

Edouard L. Fu (),^{1,2,3} Andrew S. Levey,⁴ Josef Coresh (),⁵ Carl-Gustaf Elinder,⁶ Joris I. Rotmans (),⁷ Friedo W. Dekker (),³ Julie M. Paik (),¹ Peter Barany,⁶ Morgan E. Grams,⁷ Lesley A. Inker,⁴ and Juan-Jesus Carrero²

Which eGFR is most accurate and should be used for decision making when discordances occur?

In each stratum performance:

- 1. eGFR_{cr} (CKD-EPI 2021)
- 2. eGFR_{cys} (CKD-EPI 2012)
- 3. eGFR_{cr-cys} (CKD-EPI 2021)

Distribution of bias in the overall population

Distribution of bias stratified by discordance

Table 2. Bias, P_{30} , interquartile range and correct classification of different Chronic Kidney Disease Epidemiology Collaboration eGFR equations, overall and stratified by the magnitude and direction of the discordance between eGFR_{cr} and eGFR_{cys}

		eGFR _{cys} <egfr<sub>cr</egfr<sub>	$eGFR_{cys} \approx eGFR_{cr}$	eGFR _{cys} >eGFR _{cr}
Metrics	Total Population	eGFR _{cys} >20% Lower	eGFR _{cys} Within 20%	eGFR _{cys} >20% Higher
		Than eGFR _{cr}	of eGFR _{cr}	Than eGFR _{cr}
eGFR _{cr}				
Bias, ml/min per 1.73 m ²	8.7 (8.4–9.0)	15.0 (14.6–15.5)	4.5 (4.1–4.8)	-4.5 (-5.3 to -3.8)
P ₃₀ (%)	68.8 (67.8–69.7)	49.7 (48.3–51.2)	86.0 (84.9–87.0)	85.9 (83.2–88.3)
IQR, ml/min per 1.73 m ²	18.6 (0.2–18.8)	17.5 (7.0–24.5)	15.1 (-2.0 to 13.1)	12.3 (-13.0 to -0.7)
Correct classification (%)	52.6 (51.6–53.6)	38.1 (36.7–39.5)	66.5 (65.1–67.9)	61.9 (58.3–65.4)
eGFR _{cvs}				
Bias, ml/min per 1.73 m ²	-2.3 (-2.6 to -2.0)	-8.6 (-9.0 to -8.3)	2.1 (1.7–2.4)	8.4 (7.3–10.0)
P ₃₀	80.7 (79.9–81.5)	72.9 (71.6–74.2)	90.4 (89.5–91.3)	71.8 (68.4–75.1)
IQR, ml/min per 1.73 m ²	15.6 (–10.5 to 5.1)	14.2 (-16.5 to -2.3)	13.8 (-4.0 to 9.9)	16.5 (2.5–19.0)
Correct classification	57.4 (56.4–58.4)	45.4 (43.9–46.8)	69.2 (67.8–70.5)	62.9 (59.4–66.6)
eGFR _{cr-cys}				
Bias, ml/min per 1.73 m ²	2.5 (2.2–2.7)	0.7 (0.4–1.0)	5.0 (4.6–5.4)	1.8 (1.2–2.5)
P ₃₀	86.4 (85.7–87.1)	84.3 (83.2–85.4)	88.3 (87.3–89.3)	87.8 (85.4–90.2)
IQR, ml/min per 1.73 m ²	13.6 (-3.5-10.0)	12.6 (-5.5-7.1)	14.5 (-1.4-13.2)	12.3 (-2.6-9.6)
Correct classification	65.4 (64.5–66.4)	61.6 (60.2–63)	68.4 (67–69.7)	71.9 (68.6–75.2)
Correct classification	65.4 (64.5–66.4)	61.6 (60.2–63)	68.4 (67–69.7)	71.9 (68.6–75.2)

	Replacing eGFI	R _{cr} by eGFR _{cr-cys}	Replacing eGFR _{cys} by eGFR _{cr-cys}		
	eGFR _{cys} < eGFR _{cr}	$eGFR_{cys} > eGFR_{cr}$	eGFR _{cys} < eGFR _{cr}	$eGFR_{cys} > eGFR_{cr}$	
Participants, n	4465	713	4465	713	
Total reclassified, n (%)	2838 (63.6)	284 (39.8)	2407 (53.9)	161 (22.6)	
Correctly reclassified, n (%)	1700 (38.1)	174 (24.4)	1396 (31.3)	108 (15.1)	
Incorrectly reclassified, n (%)	1138 (25.5)	110 (15.4)	1011 (22.6)	53 (7.4)	
Net difference, %	12.6	9.0	8.6	7.7	

Subgroups

Conclusion

If creatinine and/or cystatin C are influenced by non-GFR determinants

Combining both markers improves precision by reducing errors that are due to variation in the non-GFR determinants of each marker

AJKD

Original Investigation

Discordances Between Creatinine- and Cystatin C–Based Estimated GFR and Adverse Clinical Outcomes in Routine Clinical Practice

Juan-Jesús Carrero, Edouard L. Fu, Yingying Sang, Shoshana Ballew, Marie Evans, Carl-Gustaf Elinder, Peter Barany, Lesley A. Inker, Andrew S. Levey, Josef Coresh, and Morgan E. Grams

How common are large differences between eGFR_{cr} and eGFR_{cvs}, and does it influence prognosis?

N = 158,663 same-day outpatient creatinine & cystatin C testing

 $eGFR_{diff}$ (%) = ($eGFR_{cys}$ - $eGFR_{cr}$)/ $eGFR_{cr}$

Prevalence and magnitude of discordances

- Majority of determinations (65%) had negative eGFRdiff_{cys-cr}
- On average, eGFR_{cys} was 10% lower or
 7 ml/min/1.73 m² lower than eGFR_{cr}
- In 32% of determinations eGFR_{cys} was
 >15 ml/min/1.73m² lower compared to eGFR_{cr}

Prognostic implications

Hazard ratios were adjusted for age, sex, hypertension, diabetes, history of CVD, baseline eGFR_{cr}, log(UACR)

Annals of Internal Medicine

Original Research

Association of Low Glomerular Filtration Rate With Adverse Outcomes at Older Age in a Large Population With Routinely Measured Cystatin C

Edouard L. Fu, PhD; Juan-Jesus Carrero, PharmD, PhD; Yingying Sang, MS; Marie Evans, MD, PhD; Junichi Ishigami, MD, PhD; Lesley A. Inker, MD, MS; Morgan E. Grams, MD, MHS, PhD; Andrew S. Levey, MD; Josef Coresh, MD, PhD^{*}; and Shoshana H. Ballew, PhD^{*}

Uncertainty about CKD threshold in older patients

Threshold for defining CKD in part based on association between eGFR_{cr} and risks

Weaker because of older age or because of less accurate eGFR?

Weaker association, less accurate eGFR _{cr}

Risk not elevated for eGFR 60 mL/min/1.73m² at older age

Hallan SI, Matsushita K, Sang Y, et al. Age and Association of Kidney Measures With Mortality and End-stage Renal Disease. *JAMA*. 2012;308(22):2349–2360. doi:10.1001/jama.2012.16817

REVIEW www.jasn.org

CKD: A Call for an Age-Adapted Definition

Pierre Delanaye (),¹ Kitty J. Jager,² Arend Bökenkamp,³ Anders Christensson (),⁴ Laurence Dubourg,⁵ Bjørn Odvar Eriksen (),^{6,7} François Gaillard,⁸ Giovanni Gambaro,⁹ Markus van der Giet,¹⁰ Richard J. Glassock,¹¹ Olafur S. Indridason,¹² Marco van Londen,¹³ Christophe Mariat,¹⁴ Toralf Melsom,^{6,7} Olivier Moranne,¹⁵ Gunnar Nordin (),¹⁶ Runolfur Palsson,^{12,17} Hans Pottel,¹⁸ Andrew D. Rule (),¹⁹ Elke Schaeffner,²⁰ Maarten W. Taal (),²¹ Christine White,²² Anders Grubb (),²³ and Jan A. J. G. van den Brand²⁴

But couldn't it just be due to inaccurate eGFR_{cr}?

Hypothesis

Table 1. Baseline Characteristics of Persons Aged 65 Years or Older With Creatinine Testing and the Subset With Same-Day Creatinine and Cystatin C Testing in Stockholm During 2010-2019

Characteristic	Population With	Subset With Creatinine and Cystatin C Testing				
	Creatinine Testing	Overall	Aged 65-74 y	Aged ≥75 y	UACR <30 mg/g*	UACR ≥30 mg/g*
Persons, n	432 198	82 154	39 562	42 592	29 998	11 214
Mean age (SD), <i>y</i>	73 (8)	77 (8)	70 (3)	83 (6)	76 (8)	76 (8)
Mean eGFR _{cr} (SD), <i>mL/min/1.73 m²</i>	78 (18)	67 (22)	74 (21)	61 (21)	69 (21)	54 (25)
Mean eGFR _{cr-cys} (SD), <i>mL/min/1.73 m²</i>	_	61 (24)	70 (23)	53 (21)	63 (23)	47 (24)
Mean eGFR _{cys} (SD), <i>mL/min/1.73</i> m ²	-	54 (24)	64 (24)	45 (20)	56 (23)	40 (22)
Female, %	55.0	49.9	43.6	55.9	51.3	36.0
Hypertension, %	35.4	80.3	74.9	85.5	81.9	92.4
Antihypertensive medication use, %	19.9	75.9	71.1	80.6	77.8	88.3
Diabetes, %	10.4	24.6	26.3	23.2	31.2	52.1
History of cardiovascular disease, %	23.5	40.5	30.0	50.5	38.2	50.8
Mean total cholesterol level (SD)†						
mmol/L	5.1 (1.2)	5.1 (1.2)	5.1 (1.2)	5.0 (1.2)	5.0 (1.2)	4.7 (1.2)
mg/dL	196 (46)	195 (46)	197 (47)	192 (46)	193 (46)	183 (48)
Mean HDL cholesterol level (SD)†						
mmol/L	1.4 (0.5)	1.4 (0.5)	1.4 (0.5)	1.5 (0.5)	1.5 (0.5)	1.3 (0.4)
mg/dL	55 (18)	55 (18)	55 (18)	56 (18)	56 (18)	49 (17)
Median UACR (IQR), <i>mg/g</i> †	16 (6-58)	<mark>17 (6-68)</mark>	13 (5–58)	22 (8-79)	8.0 (4.4-14.2)	113 (52-362)

 $eGFR_{cr} = estimated$ glomerular filtration rate using creatinine level; $eGFR_{cr-cys} = estimated$ glomerular filtration rate using creatinine and cystatin C level; $eGFR_{cys} = estimated$ glomerular filtration rate using cystatin C level; HDL = high-density lipoprotein; UACR = urinary albumin-creatinine ratio. * Converted using dipstick values when UACR was missing.

† In the population tested for creatinine, data on total cholesterol level, HDL cholesterol level, and UACR were missing in 29.4%, 44.3%, and 64.8% of persons, respectively. In the subset of persons tested for creatinine and cystatin C, the respective proportions of missing data were 24.5%, 32.7%, and 49.8% overall; 16.5%, 23.0%, and 46.3% among persons aged 65 to 74 years; 32.0%, 41.7%, and 53.1% among those aged \geq 75 years; 15.2%, 21.4%, and 0% among those with UACR <30 mg/g; and 13.4%, 19.8%, and 0% among those with UACR \geq 30 mg/g. To convert UACR from mg/g to mg/mmol, multiply by 0.113. The numbers shown are before multiple imputation.

Adjusted for age, sex, hypertension, diabetes, CVD, log(UACR). For CV death, hospitalization, MI/stroke, and heart failure also adjustment for total cholesterol, HDL cholesterol and antihypertensive medication use

Adjusted for age, sex, hypertension, diabetes, CVD, log(UACR). For CV death, hospitalization, MI/stroke, and heart failure also adjustment for total cholesterol, HDL cholesterol and antihypertensive medication use

Conclusion

• Magnitude of hazard ratios for wide range of outcomes: eGFR_{cvs} > eGFR_{cr-cvs} > eGFR_{cr}

• Strong U-shaped relationship for eGFR_{cr}

• Differences in risks for eGFR_{cr}, eGFR_{cys}, eGFR_{cr-cys} due to non-GFR determinants

Conclusions

- Findings support increased use of cystatin C for clinical management
- eGFRcr-cys performs best with P30 close to 90% regardless of equation used, also in case of discordances, and for epidemiological purposes

- Wide variation in eGFRcr performance, with poorest performance for CKD-EPI 2021
 - What should we use in Europe? Keep using CKD-EPI 2009 or switch to EKFC?

Impact on clinical guidelines/consensus statements

KDIGO 2024 CLINICAL PRACTICE GUIDELINE FOR THE EVALUATION AND MANAGEMENT OF CHRONIC KIDNEY DISEASE

PRIMER

Moving forward from Cockcroft-Gault creatinine clearance to race-free estimated glomerular filtration rate to improve medication-related decision-making in adults across healthcare settings: A consensus of the National Kidney Foundation Workgroup for Implementation of Race-Free eGFR-Based Medication-Related Decisions

DE GRUYTER

Clin Chem Lab Med 2025; 63(3): 525-534

Guidelines and Recommendations

Etienne Cavalier*, Tomáš Zima, Pradip Datta, Konstantinos Makris, Elke Schaeffner, Michel Langlois, Mario Plebani and Pierre Delanaye, on behalf of the EFLM Task Group on Chronic Kidney Disease

Recommendations for European laboratories based on the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

In progress: measured GFR and adverse outcomes

- mGFR - eGFR_{cr} - eGFR_{cys} - eGFR_{cr-cys}

In progress: Influence of filtration marker on KFRE

Equation	C-statistic 2-year KFRE	C-statistic 5-year KFRE
CKD-EPIcr 2009	0.959 (0.952 - 0.964)	0.943 (0.938 - 0.948)
CKD-EPIcr 2021	0.959 (0.953 - 0.965)	0.943 (0.939 - 0.949)
CKD-EPIcys 2012	0.952 (0.946 - 0.959)	0.929 (0.924 - 0.935)
CKD-EPIcr-cys 2012	0.959 (0.953 - 0.965)	0.942 (0.937 - 0.947)
CKD-EPIcr-cys 2021	0.960 (0.953 - 0.965)	0.942 (0.937 - 0.947)

