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1. What are causal questions and why do we need
observational studies?
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Answering causal questions using 
observational data

Causal questions:

• Is it better to start an ACEi or 
calcium channel blocker in 
CKD?

• Should we start dialysis 
earlier or later?

Non-causal questions:

• How accurate is CKD-EPI 
2021 equation compared 
with measured GFR?

• Do patients with higher level 
of biomarker X have a worse 
prognosis?

What is the best course of 
action we could take?

Can be answered with RCT (in theory) 
5

Do not involve 
interventions



Why do we need observational 
studies?

• Preferably, each causal question would be
answered in large-scale randomized controlled trials

• May not always be feasible, ethical or timely

• Number of clinical questions outpaces the number
of trials that can be done
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Sometimes trial evidence is inconclusive
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44% of intended sample size
HR 0.93 (0.53-1.65)

20% of intended sample size
HR 1.20 (0.63-2.30)
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Conclusion of abstract RENAL-AF: “There was 

inadequate power to draw any conclusion regarding 

rates of major or clinically relevant non-major bleeding 

comparing apixaban and warfarin in patients with AF 

and ESKD on hemodialysis.”



Answering causal questions using 
observational data

• Observational data: data in which persons were not 
randomized to particular treatments

• Often come from administrative data (e.g. claims), 
electronic health records, registries…
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Routinely collected healthcare data

Healthcare use
• Inpatient
• Outpatient

Diagnoses

Laboratory
measurements

Drugs

The patient journey (time)

Adapted from Carrero
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2. The importance of target trial emulation
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57% suffered from immortal time bias

44% suffered from prevalent user selection

→ These biases are prevented if target trial emulation is used



Target trial emulation: emulate RCT 
design

3 components aligned at randomization:

• Eligibility criteria are met (E)

• Assignment of treatment strategy (A) 

• Start of follow-up (= time zero, T0)

Aligning these 3 components in 

observational study prevents bias
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Time E
A
T0

Treatment 
strategy 1

Treatment 
strategy 2

What happens in an RCT? 



IDEAL trial  vs. observational studies
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Randomized IDEAL trial 

(NEJM, 2010) showed 

no difference for all-

cause mortality between 

early vs. late dialysis 

initiation: HR 1.04 

(0.83-1.30)

Susantitaphong et al. AJKD 2012

Meta-analysis of observational studies showed 

strong survival disadvantage for early dialysis start

HR 1.44 for 10 ml/min earlier start



Discrepancy due to: 

• unnecessary biases which can be prevented by target trial emulation? or

• unmeasured confounding? 
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Target trial emulation helps to estimate 
causal effects

Correct 
study 
design

Biases introduced
Confounding 
adjustment 
necessary

Hazard ratio 
(95% CI) 
early vs. late

Randomized IDEAL trial  - No 1.04 (0.83-1.30)

Trial emulation analysis  - Yes 0.96 (0.94-0.99)

Biased method #1 Immortal time bias Yes 1.46 (1.19-1.78)

Biased method #2
Lead time bias, 
Depl. suscept. bias

Yes 1.58 (1.37-1.83)

HR of 1.46 and 1.58 very similar in magnitude to previous biased 
observational studies (n = 21)



Confounding as the culprit?

• Confounding not the primary reason for discrepancy

• Due to biases introduced by investigator

 → Could have been prevented by target trial emulation
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Target trial emulation
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3. Combatting confounding
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Difference between RCT and 
observational studies: confounding
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RCT

vs.

Observational study

vs.



Target trial emulation does not solve the 
problem of unmeasured confounding 

• This requires measuring and appropriately adjusting for all 
confounders

• Target trial emulation only prevents self-inflicted biases 
(immortal time bias, selection bias, lead time bias)

20



Combatting confounding

Study 
question

•Intended/unintended, beneficial/harmful effects

•Active comparators

Statistical 
analysis

Checks
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Not all questions equally susceptible to confounding
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Adapted from Schneeweiss

Beneficial 
effect

Harmful 
effect

Unintended 
effect

Intended 
effect
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OBS

RCT OBS

SGLT2i and DKA

SGLT2i and HF after RCTsSGLT2i and HF before RCTs



Active comparators help

We can reduce 
confounding by applying 
an active comparator 
design
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JAMA Intern Med. 2016;176(2):238-46



Combatting confounding

Study 
question

•Intended/unintended, beneficial/harmful effects

•Active comparators

Statistical 
analysis

Adjustment for measured confounders

Checks
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Adjusting for measured confounders
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Measured confounders

Multivariable 
regression

Propensity score 
methods

-Matching  
-Weighting

• In general, similar results

• In setting of time-varying
confounding, methods such
as weighting are required

vs.



Combatting confounding

Study 
question

•Intended/unintended, beneficial/harmful effects

•Active comparators

Statistical 
analysis

Adjustment for measured confounders

Checks

•Benchmark against trial results

•Negative control outcomes
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Benchmarking against trial findings
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CKD G4-5

Observational 
estimates, 

HR (95% CI)

KRT 0.79 (0.69-0.89)

Death 0.97 (0.88-1.07)

MACE 1.00 (0.88-1.15)

CKD G3

Observational 
estimates, 

HR (95% CI)

0.68 (0.48-0.98)

0.97 (0.81-1.17)

1.09 (0.85-1.40)

CKD G3 CKD G3

Network meta-
analysis Xie et al. 

AJKD 2016, 
OR (95% CI)

Meta-analysis 
Ninomiya et al. 

BMJ 2013, 
HR (95% CI)

0.65 (0.51-0.80) -

- 1.00 (0.89-1.13)

0.94 (0.75-1.12) -

Fu et al. AJKD. 2021;77(5):719-29
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Study question

• P: HF, type 2 diabetes, ≥65 years

• I: SGLT-2i

• C: Sitagliptin (DPP-4i)

• O: All-cause death, heart failure hospitalization

Data source: Medicare claims data

Active-comparator new-user design, adjusting for >100 
potential confounders (demographics, comorbidities, 
medications, healthcare utilization, healthy behavior 
markers)
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Using negative control outcomes to 
correct for residual confounding

Primary 
composite

All-cause death
Hospitalization 
for Heart Failure

0.72 (0.67-0.77) 0.70 (0.63-0.78) 0.64 (0.58-0.70)

Corrected HR’s for residual confounding
Estimated 
bias on log 
scale

Observed HR 
(95% CI)

Assumed 
true HR

Negative 
control 
outcome

0.78 (0.62-0.99)0.87 (0.71-1.10)0.89 (0.72-1.11)0.210.81 (0.65-1.01)1.00Non-CV death

0.77 (0.60-0.99)0.84 (0.65-1.09)0.86 (0.67-1.10)0.180.83 (0.65-1.06)1.00Ischemic stroke
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Confounding and residual confounding 

• The discussion whether there is residual confounding 
(and more importantly, how big it is), is nuanced

• Influenced by many things:
• Study question, design, statistical analysis

• Data (which variables are present in dataset?)

• Not all observational studies are the same

• Not all observational studies are biased!
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Take home points

How to improve causal inference from observational data?

1. Apply target trial emulation! 
• Emulate the design of an RCT by aligning E/A/T0

• This prevents immortal time and selection bias

2. Address confounding in various steps throughout your study
• Start with the question (unintended/intended? Active comparator?)

• Use appropriate methods for time-varying confounding

• Use negative controls or benchmarking when possible
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Useful references

• Target Trial Emulation to Improve Causal Inference from Observational Data: What, 
Why, and How? JASN 2023. (introduction to target trial emulation)

• Pharmacoepidemiology for nephrologists (part 2): potential biases and how to 
overcome them. CKJ 2020. Fu et al. (immortal/prevalent user bias)

• Timing of dialysis initiation to reduce mortality and cardiovascular events in advanced 
chronic kidney disease: nationwide cohort study. BMJ 2021. Fu et al. (application of TTE)

• Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of 
Adverse Outcomes: A Nationwide Study. JASN 2021. Fu et al. (application of TTE)

• Sodium-glucose cotransporter 2 inhibitors vs. sitagliptin in heart failure and type 2 
diabetes: an observational cohort study. European Heart Journal 2023. Fu et al. (& 
negative control outcomes)

• Comparative Effectiveness of Renin-Angiotensin System Inhibitors and Calcium Channel 
Blockers in Individuals With Advanced CKD: A Nationwide Observational Cohort Study. 
AJKD 2021. (benchmarking against trial findings)
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