

# Drawing causal inference from observational studies in nephrology

Edouard Fu, PhD

Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital and Harvard Medical School





## **Disclosure of Interest**

Do you have, or have you had during the past 2 years, any formal association with a company or other interested party?

No

Do you have, or have you had during the past 2 years, received any grants from an entity

Yes, grants from the Netherlands Organization for Scientific Research and Dutch Kidney Foundation

Do you have, or have you had during the past 2 years, received any non-financial support from an entity?

No

Are you a member (current) of any kind of committee, board, WG, etc. of another scientific association with similar aims as ERA

No





## Content

- 1. What are causal questions and why do we need observational studies?
- 2. The importance of target trial emulation
- 3. Combatting confounding





## 1. What are causal questions and why do we need observational studies?





# Answering **causal questions** using observational data

### Causal questions:

- Is it better to start an ACEi or calcium channel blocker in CKD?
- Should we start dialysis earlier or later?

## What is the best course of action we could take? Can be answered with RCT (in theory)

### Non-causal questions:

- How accurate is CKD-EPI 2021 equation compared with measured GFR?
- Do patients with higher level of biomarker X have a worse prognosis?

Do not involve interventions



# Why do we need observational studies?

- Preferably, each causal question would be answered in large-scale randomized controlled trials
- May not always be feasible, ethical or timely
- Number of clinical questions outpaces the number of trials that can be done





## Sometimes trial evidence is inconclusive

### Circulation

A Randomized Controlled Trial Comparing Apixaban to the Vitamin K-antagonist Phenprocoumon in Patients on Chronic Hemodialysis: The AXADIA-AFNET 8 study

Holger Reinecke, Christiane Engelbertz ⊡, Rupert Bauersachs, Günter Breithardt, Hans-Herbert Echterhoff, Joachim Gerβ, Karl Georg Haeusler, Bernd Hewing, Joachim Hoyer, Sabine Juergensmeyer, Thomas Klingenheben, Guido Knapp, Lars Christian Rump, Hans Schmidt-Guertler, Christoph Wanner, Paulus Kirchhof and Dennis Goerlich 44% of intended sample size HR 0.93 (0.53-1.65)

### Circulation

#### Apixaban for Patients with Atrial Fibrillation on Hemodialysis: A Multicenter Randomized Controlled Trial

Sean D. Pokorney , Glenn M. Chertow, Hussein R. Al-Khalidi, Dianne Gallup, Pat Dignaco, Kurt Mussina, Nisha Bansal, Crystal A. Gadegbeku, David A. Garcia, Samira Garonzik, Renato D. Lopes, Kenneth W. Mahaffey, Kelly Matsuda, John P. Middleton, Jennifer A. Rymer, George H. Sands, Ravi Thadhani, Kevin L. Thomas, Jeffrey B. Washam, Wolfgang C. Winkelmayer and Christopher B. Granger

Conclusion of abstract RENAL-AF: "<u>There was</u> <u>inadequate power to draw any conclusion</u> regarding rates of major or clinically relevant non-major bleeding comparing apixaban and warfarin in patients with AF and ESKD on hemodialysis." 20% of intended sample size HR 1.20 (0.63-2.30)





# Answering causal questions using **observational data**

 Observational data: data in which persons were not randomized to particular treatments

• Often come from administrative data (e.g. claims), electronic health records, registries...





## Routinely collected healthcare data

The patient journey (time)

Healthcare use

- Inpatient
- Outpatient

Diagnoses

Laboratory measurements

### Drugs







### 2. The importance of target trial emulation





### Prevalence of Avoidable and Bias-Inflicting Methodological Pitfalls in Real-World Studies of Medication Safety and Effectiveness

Katsiaryna Bykov<sup>1,\*</sup>, Elisabetta Patorno<sup>1</sup>, Elvira D'Andrea<sup>1</sup>, Mengdong He<sup>1</sup>, Hemin Lee<sup>1</sup>, Jennifer S. Graff<sup>2</sup> and Jessica M. Franklin<sup>1</sup>

57% suffered from immortal time bias 44% suffered from prevalent user selection

 $\rightarrow$  These biases are prevented if target trial emulation is used





# Target trial emulation: emulate RCT design



#### 3 components aligned at randomization:

- Eligibility criteria are met (E)
- Assignment of treatment strategy (A)
- Start of follow-up (= time zero,  $T_0$ )

Aligning these 3 components in observational study prevents bias

## **IDEAL trial**



Initiation of Dialysis

Randomized IDEAL trial (NEJM, 2010) showed no difference for allcause mortality between early vs. late dialysis initiation: HR 1.04 (0.83-1.30)

## vs. observational studies



Meta-analysis of observational studies showed strong survival disadvantage for early dialysis start









### RESEARCH

### Timing of dialysis initiation to reduce mortality and cardiovascular events in advanced chronic kidney disease: nationwide cohort study

Edouard L Fu,<sup>1</sup> Marie Evans,<sup>2</sup> Juan-Jesus Carrero,<sup>3</sup> Hein Putter,<sup>4</sup> Catherine M Clase,<sup>5</sup> Fergus J Caskey,<sup>6</sup> Maciej Szymczak,<sup>7</sup> Claudia Torino,<sup>8</sup> Nicholas C Chesnaye,<sup>9</sup> Kitty J Jager,<sup>9</sup> Christoph Wanner,<sup>10</sup> Friedo W Dekker,<sup>1</sup> Merel van Diepen<sup>1</sup>

Discrepancy due to:

- unnecessary biases which can be prevented by target trial emulation? or
- unmeasured confounding?



## Target trial emulation helps to estimate causal effects



|                          | Correct<br>study<br>design | <b>Biases introduced</b>               | Confounding<br>adjustment<br>necessary | Hazard ratio<br>(95% CI)<br>early vs. late |
|--------------------------|----------------------------|----------------------------------------|----------------------------------------|--------------------------------------------|
| Randomized IDEAL trial   |                            | -                                      | No                                     | 1.04 (0.83-1.30)                           |
| Trial emulation analysis |                            | -                                      | Yes                                    | 0.96 (0.94-0.99)                           |
| Biased method #1         | 0                          | Immortal time bias                     | Yes                                    | 1.46 (1.19-1.78)                           |
| Biased method #2         | 0                          | Lead time bias,<br>Depl. suscept. bias | Yes                                    | 1.58 (1.37-1.83)                           |

HR of 1.46 and 1.58 very similar in magnitude to previous biased observational studies (n = 21)





## Confounding as the culprit?

• Confounding not the primary reason for discrepancy

Due to biases introduced by investigator
→ Could have been prevented by target trial emulation





## Target trial emulation

www.jasn.org

### Target Trial Emulation to Improve Causal Inference from Observational Data: What, Why, and How?

### Edouard L. Fu 🝺

REVIEW

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts





### 3. Combatting confounding





# Difference between RCT and observational studies: confounding







## Target trial emulation <u>does not</u> solve the problem of unmeasured confounding

- This requires measuring and appropriately adjusting for all confounders
- Target trial emulation only prevents self-inflicted biases (immortal time bias, selection bias, lead time bias)



## Combatting confounding







Not all questions equally susceptible to confounding



|                      | <u>Un</u> intended<br>effect | Intended<br>effect       |  |  |
|----------------------|------------------------------|--------------------------|--|--|
| Beneficial<br>effect | RCT OBS                      | OBS                      |  |  |
|                      | SGLT2i and HF before RCTs    | SGLT2i and HF after RCTs |  |  |
| Harmful<br>effect    | SGLT2i and DKA               |                          |  |  |



## Active comparators help

Table 1. Baseline Characteristics of the Study Populations

Atherosclerosis Risk in Communities Study H<sub>2</sub> Receptor Antagonist PPI Users **Users**<sup>a</sup> Nonusers Variable (n = 956)(n = 9204)(n = 322)Age, mean (SD), y 63.1 (5.5) 62.5 (5.6) 62.8 (5.5) Male sex, % 42.5 39.3 44.4 Prevalent medical condition, % 44.8 Hypertension 54.3 50.0 **Diabetes mellitus** 14.9 15.6 18.0 13.7 10.8 Cardiovascular disease 14.1 Concomitant medication use, % Antihypertensive 55.3 48.5 39.9 ACE-I/ARB 16.8 12.9 13.4 Diuretic 16.1 12.1 9.6 64.9 54.9 Aspirin 67.6 Nonsteroidal 27.6 32.8 33.2 anti-inflammatory drug 10.3 Statin 20.2 13.6 1.7 Anticoagulant 1.9 2.8

We can reduce confounding by applying an active comparator design







## Combatting confounding







### Adjusting for measured confounders



- In general, similar results
- In setting of time-varying confounding, methods such as weighting are required



## Combatting confounding







### Benchmarking against trial findings

|       | CKD G4-5                                   | CKD G3                                     | CKD G3                                                            | CKD G3                                                       |
|-------|--------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|
|       | Observational<br>estimates,<br>HR (95% CI) | Observational<br>estimates,<br>HR (95% CI) | Network meta-<br>analysis Xie et al.<br>AJKD 2016,<br>OR (95% CI) | Meta-analysis<br>Ninomiya et al.<br>BMJ 2013,<br>HR (95% CI) |
| KRT   | 0.79 (0.69-0.89)                           | 0.68 (0.48-0.98)                           | 0.65 (0.51-0.80)                                                  | -                                                            |
| Death | 0.97 (0.88-1.07)                           | 0.97 (0.81-1.17)                           | -                                                                 | 1.00 (0.89-1.13)                                             |
| MACE  | 1.00 (0.88-1.15)                           | 1.09 (0.85-1.40)                           | 0.94 (0.75-1.12)                                                  | _                                                            |







**CLINICAL RESEARCH** 

Heart failure and cardiomyopathies

## Sodium–glucose cotransporter 2 inhibitors vs. sitagliptin in heart failure and type 2 diabetes: an observational cohort study

Edouard L. Fu (1)<sup>1</sup>\*, Elisabetta Patorno (1)<sup>1</sup>, Brendan M. Everett<sup>2,3</sup>, Muthiah Vaduganathan (1)<sup>2</sup>, Scott D. Solomon (1)<sup>2</sup>, Raisa Levin<sup>1</sup>, Sebastian Schneeweiss (1)<sup>1</sup>, and Rishi J. Desai (1)<sup>1</sup>





## Study question

- P: HF, type 2 diabetes, ≥65 years
- I: SGLT-2i
- C: Sitagliptin (DPP-4i)
- O: All-cause death, heart failure hospitalization

Data source: Medicare claims data

Active-comparator new-user design, adjusting for >100 potential confounders (demographics, comorbidities, medications, healthcare utilization, healthy behavior markers)





# Using negative control outcomes to correct for residual confounding

|                                |                    |                         | Primary<br>composite              | All-cause death                         | Hospitalization<br>for Heart Failure |                  |
|--------------------------------|--------------------|-------------------------|-----------------------------------|-----------------------------------------|--------------------------------------|------------------|
|                                |                    |                         |                                   | 0.72 (0.67-0.77)                        | 0.70 (0.63-0.78)                     | 0.64 (0.58-0.70) |
| Negative<br>control<br>outcome | Assumed<br>true HR | Observed HR<br>(95% CI) | Estimated<br>bias on log<br>scale | Corrected HR's for residual confounding |                                      |                  |
| Non-CV death                   | 1.00               | 0.81 (0.65-1.01)        | 0.21                              | 0.89 (0.72-1.11)                        | 0.87 (0.71-1.10)                     | 0.78 (0.62-0.99) |
| Ischemic stroke                | 1.00               | 0.83 (0.65-1.06)        | 0.18                              | 0.86 (0.67-1.10)                        | 0.84 (0.65-1.09)                     | 0.77 (0.60-0.99) |





## Confounding and residual confounding

- The discussion whether there is residual confounding (and more importantly, how big it is), is nuanced
- Influenced by many things:
  - Study question, design, statistical analysis
  - Data (which variables are present in dataset?)
- Not all observational studies are the same

### Not all observational studies are biased!





## Take home points

How to improve causal inference from observational data?

- 1. Apply target trial emulation!
  - Emulate the design of an RCT by aligning E/A/TO
  - This prevents immortal time and selection bias
- 2. Address confounding in various steps throughout your study
  - Start with the question (unintended/intended? Active comparator?)
  - Use appropriate methods for time-varying confounding
  - Use negative controls or benchmarking when possible





## Useful references

- Target Trial Emulation to Improve Causal Inference from Observational Data: What, Why, and How? JASN 2023. (introduction to target trial emulation)
- Pharmacoepidemiology for nephrologists (part 2): potential biases and how to overcome them. CKJ 2020. Fu et al. (immortal/prevalent user bias)
- Timing of dialysis initiation to reduce mortality and cardiovascular events in advanced chronic kidney disease: nationwide cohort study. BMJ 2021. Fu et al. (application of TTE)
- Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study. JASN 2021. Fu et al. (application of TTE)
- Sodium-glucose cotransporter 2 inhibitors vs. sitagliptin in heart failure and type 2 diabetes: an observational cohort study. European Heart Journal 2023. Fu et al. (& negative control outcomes)
- Comparative Effectiveness of Renin-Angiotensin System Inhibitors and Calcium Channel Blockers in Individuals With Advanced CKD: A Nationwide Observational Cohort Study. AJKD 2021. (benchmarking against trial findings)

