

Using IPW to adjust for confounding

Edouard Fu

Department of Clinical Epidemiology, LUMC

• This is going to be an interactive lecture

• Go to classpoint.app and fill in the classcode at the top right corner of this slide

What you will learn

1. Distinction between point vs. sustained treatment strategies

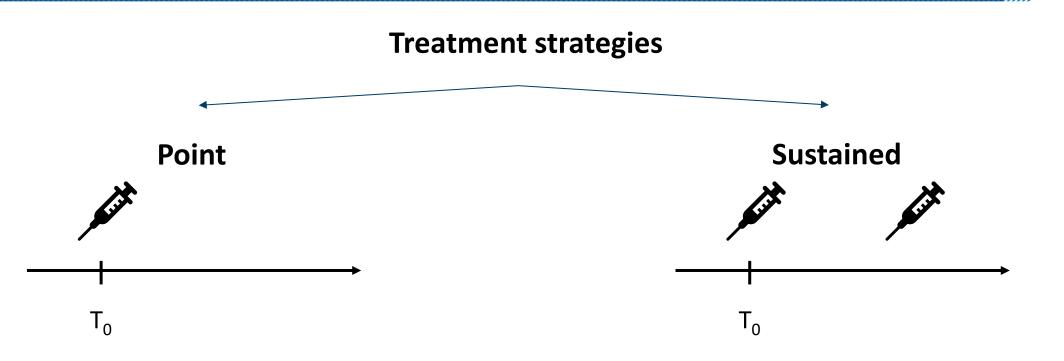
- 2. Baseline vs. time-varying confounding
- 3. How tree graphs work
- 4. How IPW adjusts for confounding

The setting

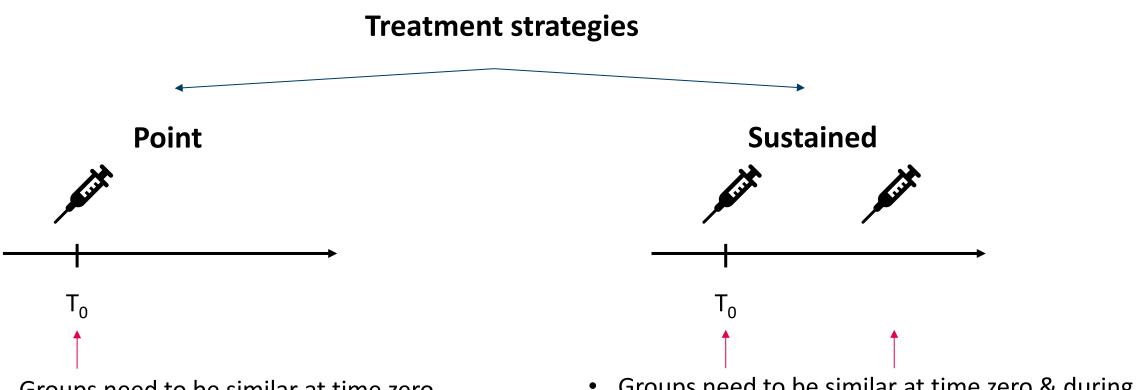
• We are interested in estimating the causal effect of a binary intervention on a binary outcome, using observational data

- In the next examples, we focus on 1 binary confounder (adjusting for this confounder is sufficient to ensure exchangeability)
- We can imagine the hypothetical target trial that would answer this question
- E.g., the causal effect of metformin use on cardiovascular outcomes in patients with type 2 diabetes
- We make a target trial protocol, and specify eligibility criteria, treatment strategies, outcomes, start and end of follow-up, causal contrast (ITT/PP), data analysis

Classification of treatment strategies



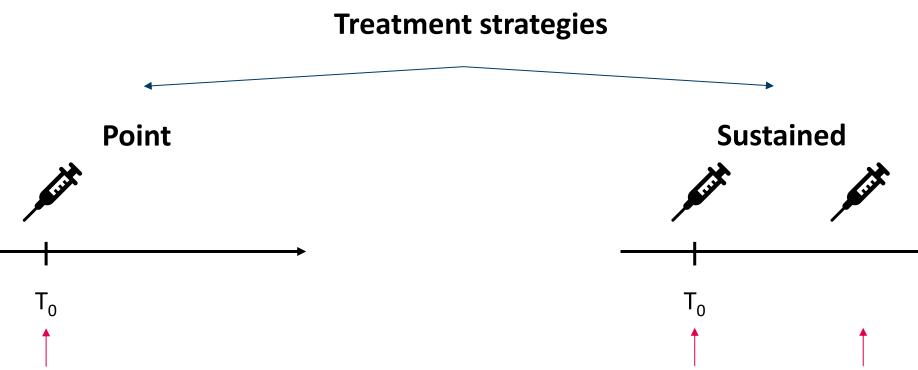
Baseline vs. time-varying confounding



- Groups need to be similar at time zero
- Only baseline confounding

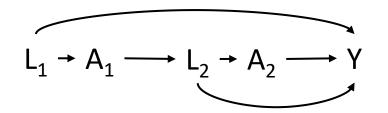
- Groups need to be similar at time zero & during follow-up
- Baseline & time-varying confounding

Baseline vs. time-varying confounding



- Groups need to be similar at time zero
- Only baseline confounding

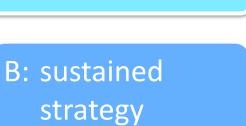
- Groups need to be similar at time zero & during follow-up
- Baseline & time-varying confounding



Let's practice with classifying treatment strategies

Point strategy or sustained treatment strategy?

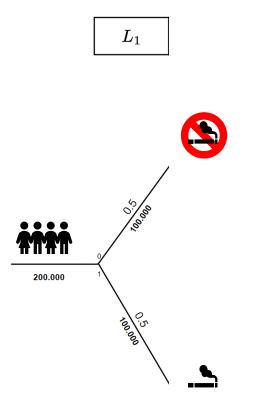
- 1. Receive bariatric surgery
- 2. Receive Pfizer first dose now, and second dose 3 weeks later
- 3. Start SGLT-2i within 3 months from now
- 4. Never start SGLT-2i
- 5. Start GLP-1RA when a cardiovascular event develops



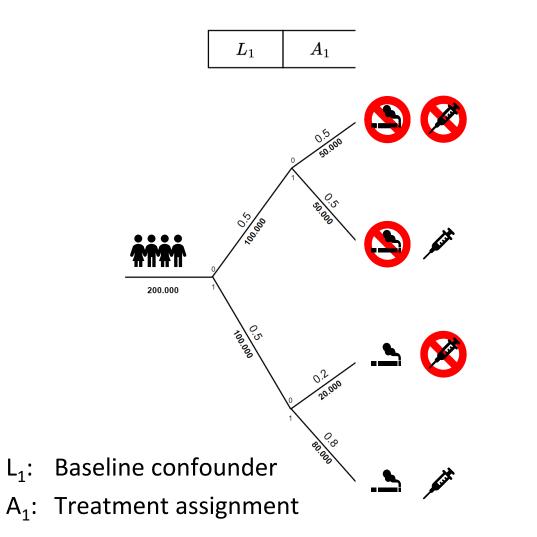
A: point strategy

Go to classpoint.app

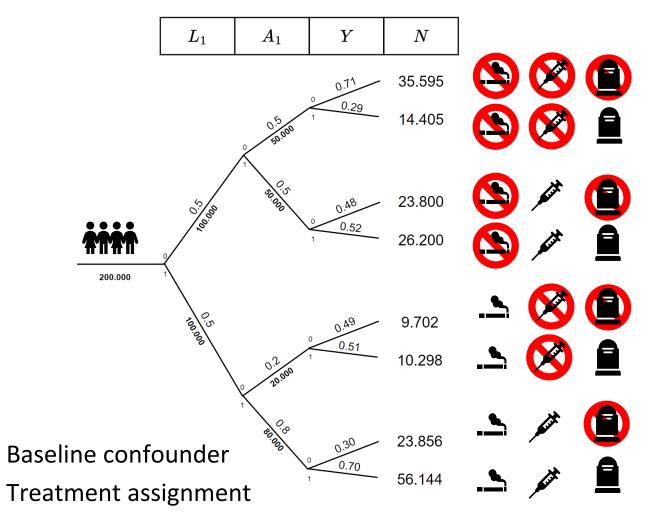
200.000



L₁: Baseline confounder



 L_1 :

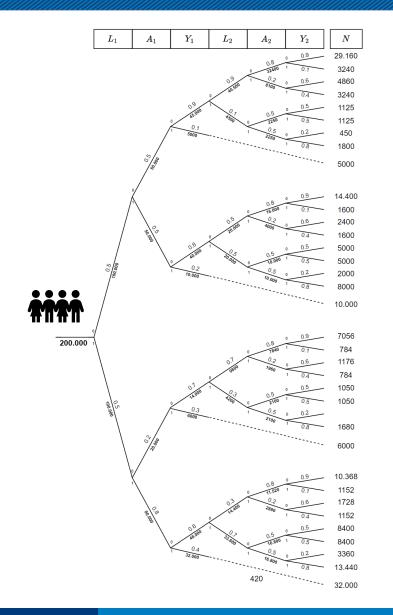


This is the whole tree of a **point intervention** because we only have treatment at single point in time!

Y: Outcome

L₁:

A₁:



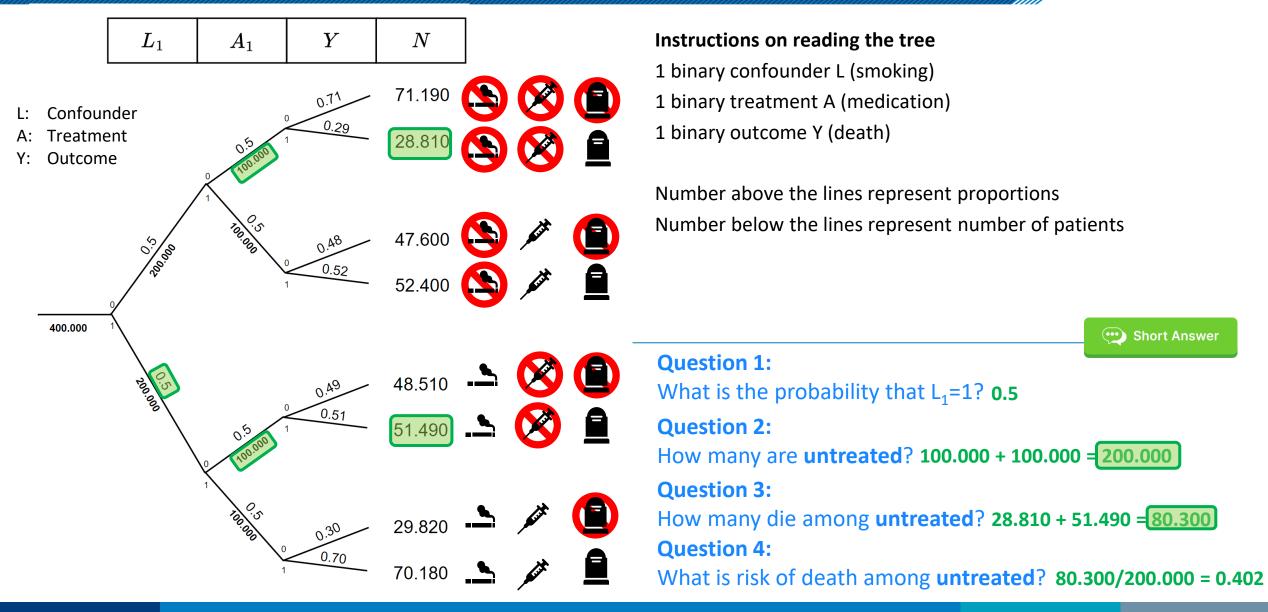
Quickly becomes more complex for **sustained strategies** because of multiple A_t

- L₁: Baseline confounder
- A_1 : Treatment at time t=1
- Y_1 : Outcome at time t=1
- L₂: Time-varying confounder
- A_2 : Treatment at time t=2
- Y₂: Outcome at time t=2

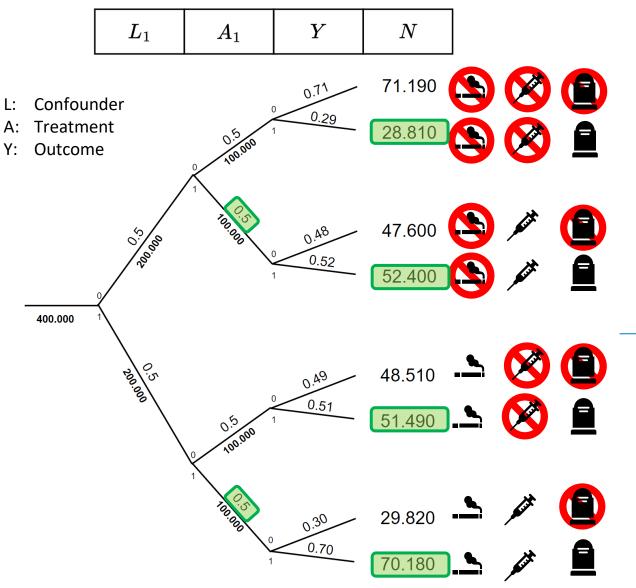
Some exercises

Go to classpoint.app

Short Answer



Some exercises

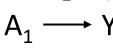


Instructions on reading the tree

- 1 binary confounder L (smoking)
- 1 binary treatment A (medication)
- 1 binary outcome Y (death)

Number above the lines represent proportions Number below the lines represent number of patients

Question 5:	Νο
Does L ₁ predict A ₁ ?	$Pr[A_1 = 1 L_1 = 1] = 0.5$
Question 6:	$Pr[A_1 = 1 L_1 = 0] = 0.5$ Yes:
Does L ₁ predict Y?	$Pr[Y = 1 L_1 = 1] = (51.490 + 70.180)/200.000 = 0.61$
Question 7:	$Pr[Y = 1 L_1 = 0] = (28.810+52.400)/200.000 = 0.41$
Is L ₁ a confounder?	No L ₁



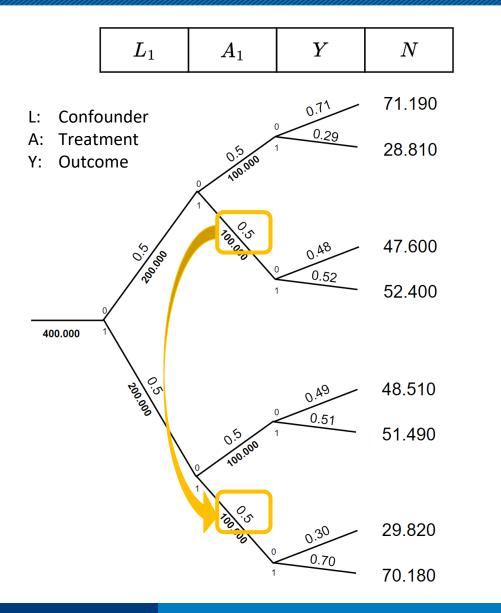
Baseline confounding

Setting

- 1 binary treatment (metformin yes vs. no)
- 1 binary outcome (myocardial infarction yes vs. no)

• 1 binary confounder

Let's check that these data indeed come from a randomized trial



In a randomized trial

- Prognostic factor does not determine whether someone receives treatment or not
- Association is causation in randomized trial

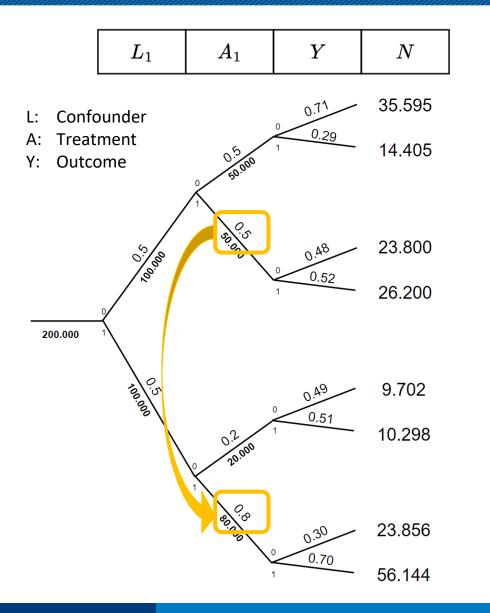
Step 3: Effect estimation

Risk among untreated (28.810+51.490)/(100.000+100.000) = 0.40

Risk among treated (52.400+70.180)/(100.000+100.000) = 0.61

Causal risk difference: 0.61-0.40 = 0.21 (= 21%) **Causal risk ratio**: 0.61/0.40 = 1.52

New tree graph. Do these new data come from a randomized trial?



 $\begin{array}{c} \swarrow \mathsf{L}_1 \searrow \\ \mathsf{A}_1 \longrightarrow \mathsf{Y} \end{array}$

In observational studies

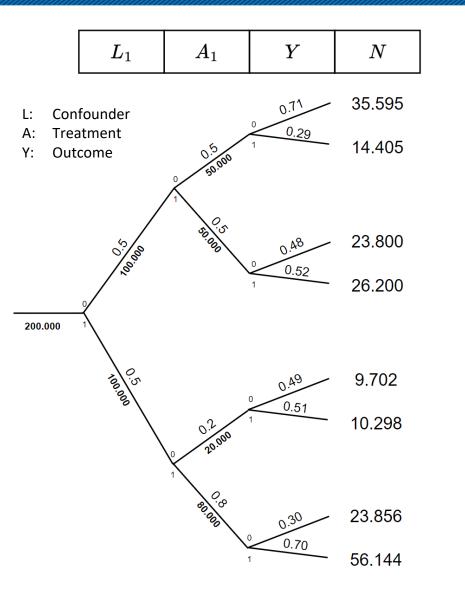
- Prognostic factor determines whether someone receives treatment or not (L₁ = confounder)
- Association is NOT causation

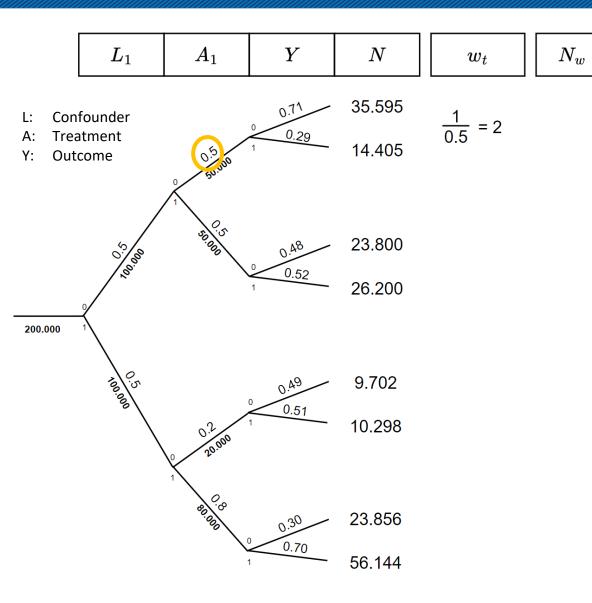
Step 3: Effect estimation without adjustment for baseline confounding

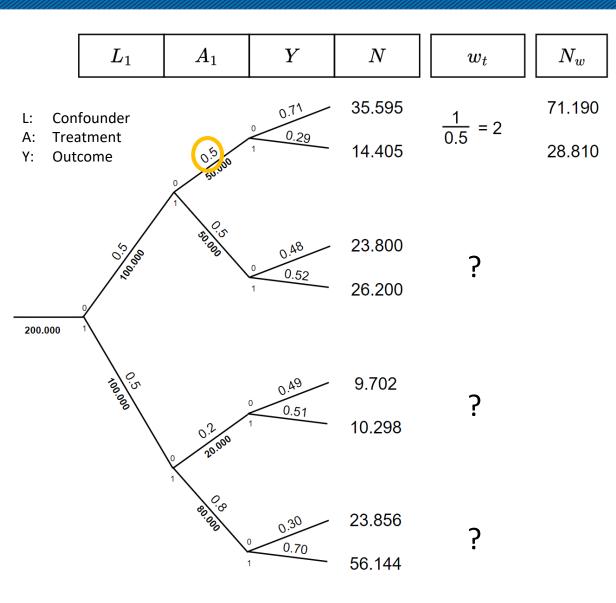
Risk among untreated (14.405+10.298)/(50.000+20.000) = 0.35 ≠ 0.40

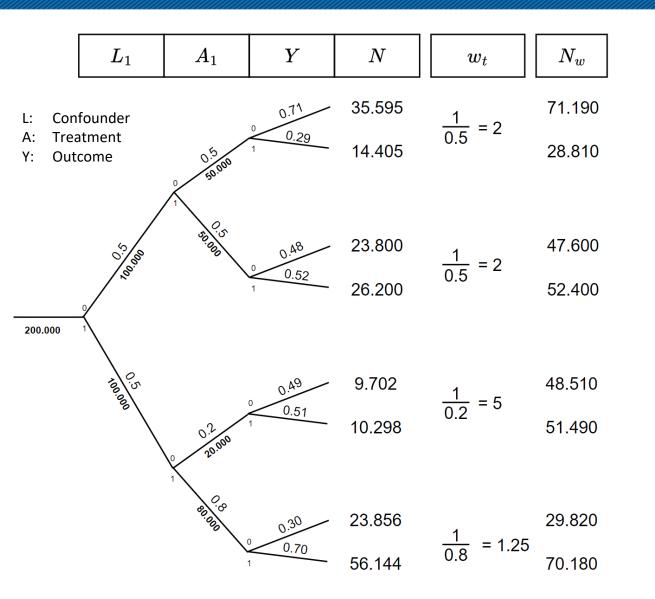
Risk among treated (26.200+56.144)/(50.000+80.000) = 0.63 ≠ 0.61

Confounded risk difference: $0.63-0.35 = 0.28 (= 28\%) \neq 0.21$ **Confounded risk ratio**: $0.63/0.35 = 1.80 \neq 1.52$

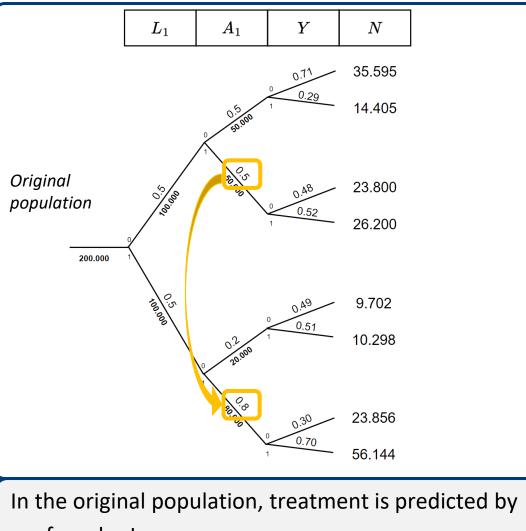




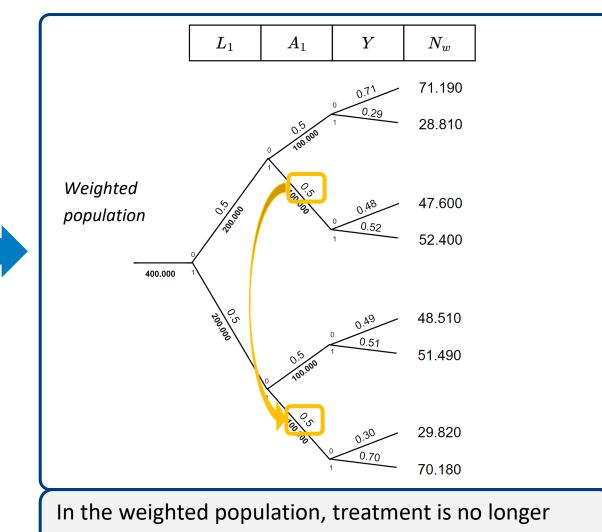




Turning our observational study into a randomized trial

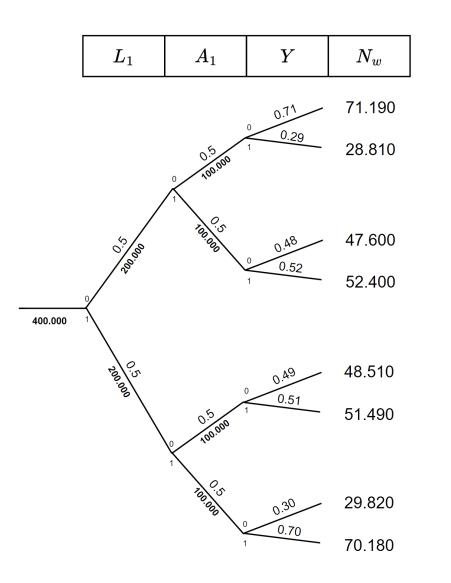


confounder L_1



predicted by confounder L₁

Treatment effect estimation in the weighted pseudopopulation



In weighted pseudopopulation

- Confounder <u>no longer</u> determines whether someone receives treatment or not
- Association is causation in the weighted pseudopopulation

Effect estimation

Risk among untreated (28.810+51.490)/(100.000+100.000) = 0.40

Risk among treated (52.400+70.180)/(100.000+100.000) = 0.61

<u>Causal</u> risk difference: 0.61-0.40 = 0.21 (= 21%) <u>Causal</u> risk ratio: 0.61/0.40 = 1.52

Some comments on weighting

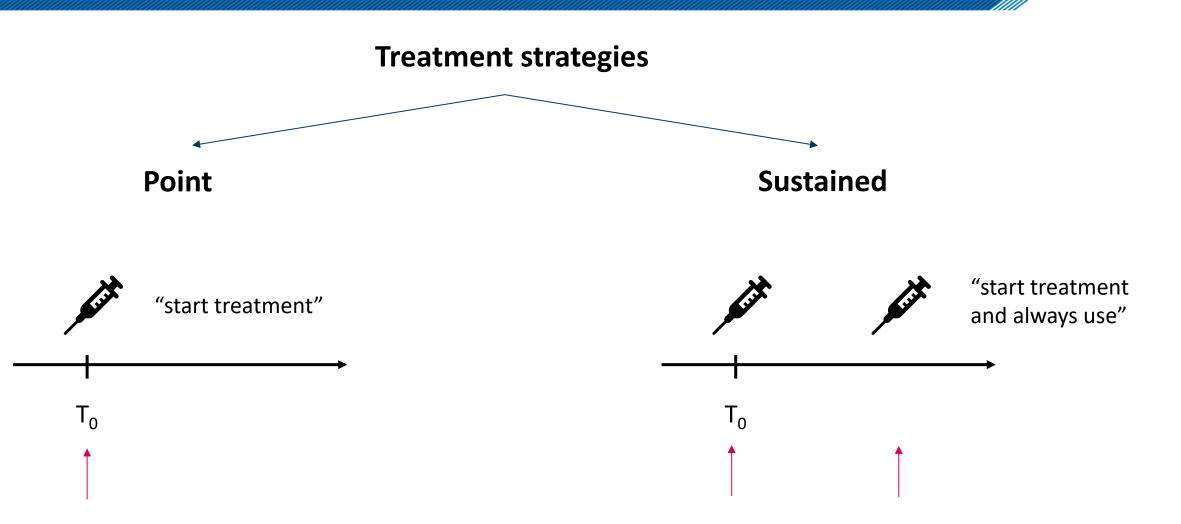
- Note that we only assumed 1 binary confounder So we could calculate the weights nonparametrically (i.e., without models)
- In practice, there may be many confounders, which may be categorical and continuous → need to **fit models** to estimate the weights (e.g. logistic regression model)
- Note that if there are unmeasured confounders (e.g. if we had not measured L₁), we cannot use them to estimate our inverse probability of treatment weights, and our resulting treatment effects will be biased (then we have not turned our observational study into a randomized trial)

Some comments on outcome model

- In practice, we also fit a model for the outcome (e.g. a *weighted* Cox regression) since survival times are not observed for everyone (there is censoring)
- To obtain correct confidence intervals we need to take into account the weighting, e.g. with robust standard error or bootstrapping

Time-varying confounding

Recap baseline vs. time-varying confounding



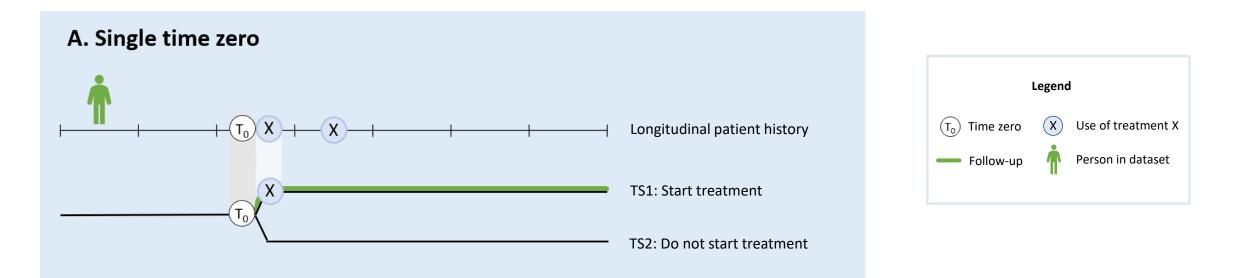
- Groups need to be similar at time zero
- Only baseline confounding

- Groups need to be similar at time zero & during follow-up
- Baseline & time-varying confounding

Why the effects of sustained strategies are more interesting

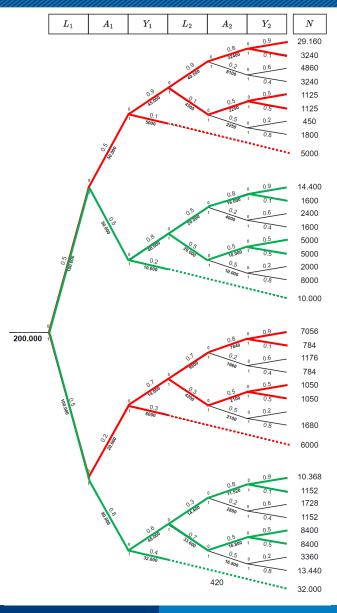
If we compare the point strategies "start treatment" vs. "do not start treatment", what problems arise?

- Many people in "start treatment" group may stop treatment during follow-up
- Conversely, many people in "do not start treatment" group may start it during follow-up
- We may then find a hazard ratio of 1.0 even for a treatment known to have benefits



Sustained strategies: tree graph with 2+ timepoints

Go to classpoint.app



Let's say we are interested in the sustained strategies:

- "always treat"
- "never treat"

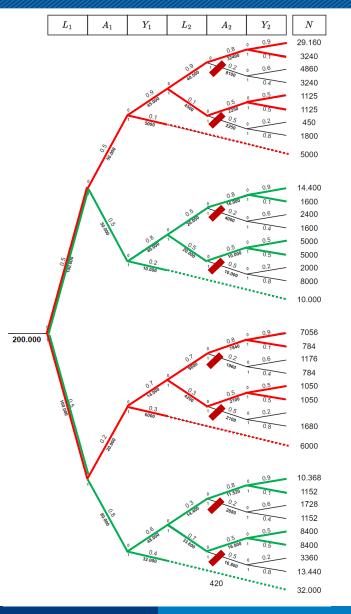
Multiple Choice

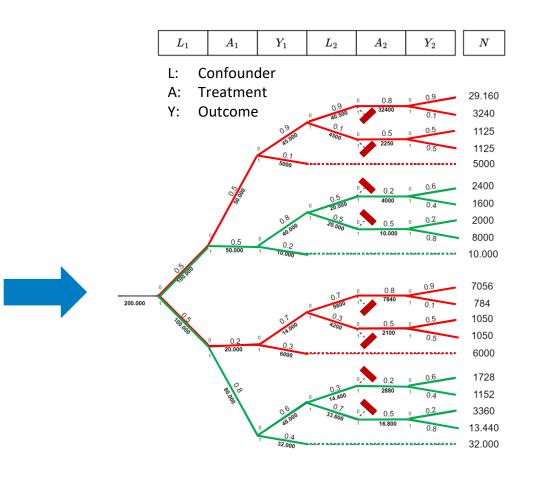
Which strategy is highlighted in the tree?

A: Always treat B: Never treat

C: Neither

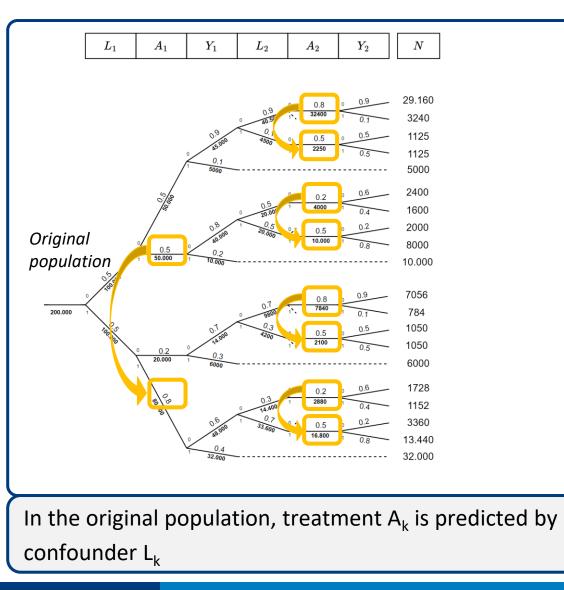
Censoring: focus only on branches of interest



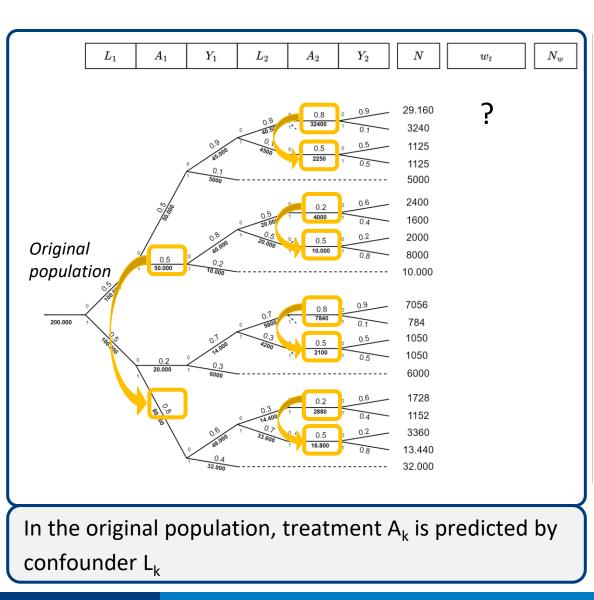


Censor patients who deviate from the strategies of interest

We cannot compare outcomes among those always vs. never using the treatment due to baseline and time-varying confounding

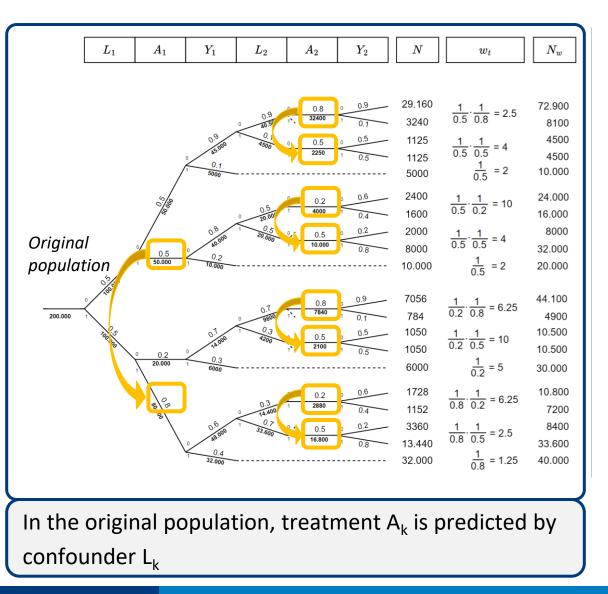


But we can use IPW to turn our observational study into a sequentially randomized trial

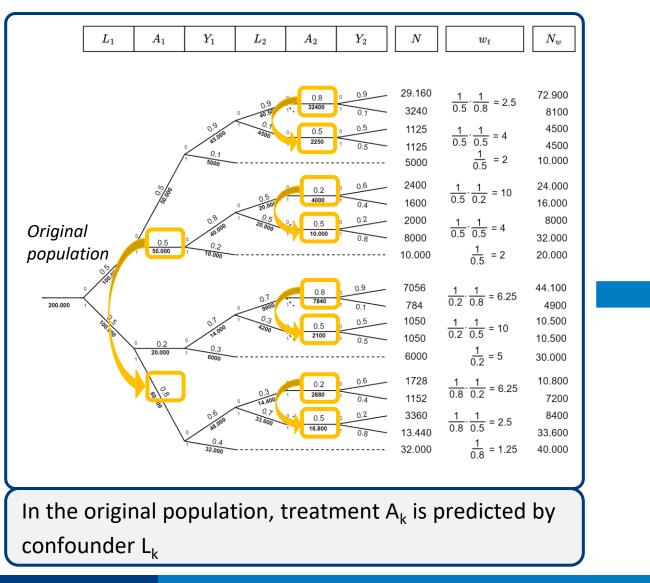


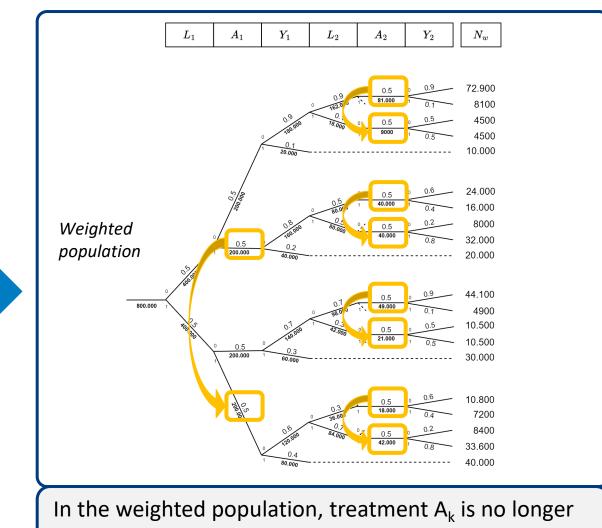
What weight do we need to give the people in the first two branches?

But we can use IPW to turn our observational study into a sequentially randomized trial



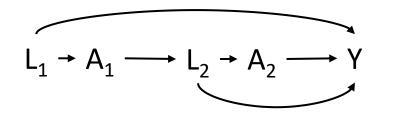
Turning our observational study into a sequentially randomized trial

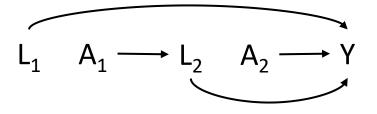




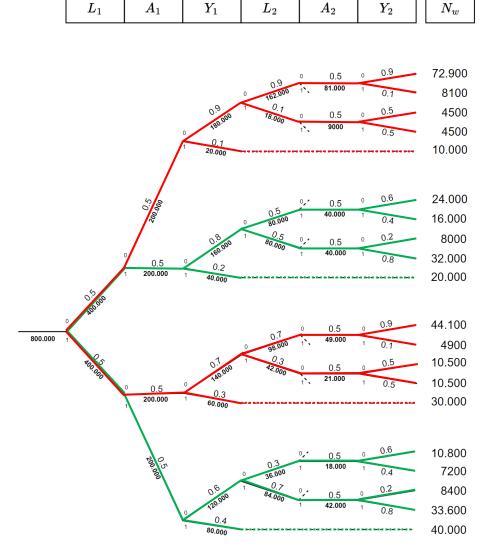
predicted by confounder L_k at each moment in time!

Before IPW





Treatment effect estimation in the weighted pseudopopulation



Effect estimation sustained strategies

Risk among never treated (8100+4500+10.000+4900+10.500+30.000)/(200.000) = 0.34

Risk among always treated (16.000+32.000+20.000+7200+33.600+40.000)/(200.000) = 0.74

<u>Causal</u> risk difference: 0.74-0.34 = 0.40 (= 40%) <u>Causal</u> risk ratio: 0.74/0.34 = 2.19

Effect estimation point strategies

Risk among untreated (28.810+51.490)/(100.000+100.000) = 0.40

Risk among treated (52.400+70.180)/(100.000+100.000) = 0.61

<u>Causal</u> risk difference: 0.61-0.40 = 0.21 (= 21%) <u>Causal</u> risk ratio: 0.61/0.40 = 1.52

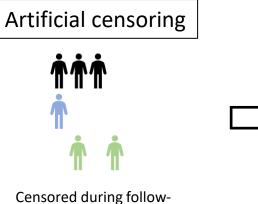
Conclusions

- 1. Important distinction between point vs. sustained strategies
- 2. Always need to adjust for baseline confounding
- 3. If interested in sustained strategies, also need to adjust for time-varying confounding

- 4. We showed how weighting can be used to turn the observational data into a randomized or sequentially randomized trial
- 5. Results are biased if there are unmeasured confounders

Questions

e.l.fu@lumc.nl



Censored during followup if not following strategy of interest

Weighting

Uncensored replicates (dark color) are upweighted to account for censored replicates (light color) with similar characteristics